留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型客机机翼挂架接合位置定常吹气控制分析

刘睿 白俊强 邱亚松 李宇飞

刘睿, 白俊强, 邱亚松, 等 . 大型客机机翼挂架接合位置定常吹气控制分析[J]. 北京航空航天大学学报, 2022, 48(1): 132-146. doi: 10.13700/j.bh.1001-5965.2020.0521
引用本文: 刘睿, 白俊强, 邱亚松, 等 . 大型客机机翼挂架接合位置定常吹气控制分析[J]. 北京航空航天大学学报, 2022, 48(1): 132-146. doi: 10.13700/j.bh.1001-5965.2020.0521
LIU Rui, BAI Junqiang, QIU Yasong, et al. Steady blowing control at wing-engine junction of airliner[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 132-146. doi: 10.13700/j.bh.1001-5965.2020.0521(in Chinese)
Citation: LIU Rui, BAI Junqiang, QIU Yasong, et al. Steady blowing control at wing-engine junction of airliner[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 132-146. doi: 10.13700/j.bh.1001-5965.2020.0521(in Chinese)

大型客机机翼挂架接合位置定常吹气控制分析

doi: 10.13700/j.bh.1001-5965.2020.0521
详细信息
    通讯作者:

    白俊强, E-mail: junqiang@nwpu.edu.cn

  • 中图分类号: V224

Steady blowing control at wing-engine junction of airliner

More Information
  • 摘要:

    对于采用下单翼布局翼吊发动机形式的大型客机而言,为了保证发动机与地面的安全距离,挂架高度较短,造成前缘缝翼被打断,大迎角下发动机短舱尾迹对其后方机翼上翼面的流动产生不利影响。采用数值模拟方法系统研究了在发动机挂架后方机翼上表面采用主动流动控制技术来提高着陆构型的气动性能。采用机翼+短舱构型研究了吹气参数对吹气效果的影响。结果表明:大迎角下,吹气可以抑制短舱后方机翼上表面的分离流动,使最大升力系数明显提高;吹气缝宽度、吹气质量流率由于会影响吹气总压的变化,对吹气效果的影响显著,对升力系数的影响量在0.05以上;吹气缝与上翼面夹角会影响能量注入的区域,对吹气效果有较大影响;吹气缝位置会影响吹气控制的范围,对吹气效果也有一定影响。分别对无短舱涡流片和有短舱涡流片的全机构型进行了校核研究。采用吹气措施之后,无短舱涡流片构型线性段升力系数增大约0.15,最大升力系数增大0.186,失速迎角增大1°;有短舱涡流片构型线性段升力系数增大约0.13,最大升力系数增大0.16。

     

  • 图 1  研究构型几何外形

    Figure 1.  Geometric shape of studied configuration

    图 2  计算网格

    Figure 2.  Computational grid

    图 3  CC020—010EJ标模构型[21]

    Figure 3.  Configuration of CC020-010EJ model[21]

    图 4  带吹气腔构型的网格

    Figure 4.  Configuration grid with blowing cavity

    图 5  压力分布对比

    Figure 5.  Pressure distribution comparison

    图 6  吹气出口速度型对比

    Figure 6.  Velocity magnitude comparison at blowing outlet

    图 7  吹气缝和堵块外形

    Figure 7.  Shape of blowing slot with and without block

    图 8  noblow、blow和blow_block升力特性对比

    Figure 8.  Lift coefficient comparison of noblow, blow and blow_block

    图 9  机翼上表面流线和边界层附近马赫数云图

    Figure 9.  Streamline on upper surface of wing and Mach number contour around boundary layer

    图 10  A-A剖面位置

    Figure 10.  Position of A-A section

    图 11  A-A剖面马赫数云图(α=16°)

    Figure 11.  Mach number contour at A-A section (α=16°)

    图 12  不同堵块数量升力特性对比

    Figure 12.  Lift coefficient comparison of different number of blocks

    图 13  短舱后方机翼上表面剖面马赫数云图

    Figure 13.  Mach number contour on upper-sectional surface of wing behind nacelle

    图 14  吹气缝宽度及与吹气缝和上翼面夹角定义

    Figure 14.  Definition of the width of blowing slot and the angle between blowing slot and upper surface of wing

    图 15  不同吹气缝宽度升力特性对比

    Figure 15.  Lift coefficient comparison of different slot widths

    图 16  不同吹气缝宽度短舱后方机翼上表面剖面马赫数云图

    Figure 16.  Sectional Mach number contour on upper surface of wing behind nacelle of different slot width

    图 17  不同吹气缝与上翼面夹角升力特性对比

    Figure 17.  Lift coefficient comparison of different angles between blowing slot and upper wing surface

    图 18  不同吹气缝与上翼面夹角机翼上表面剖面马赫数云图

    Figure 18.  Mach number contour on the sectional surface of upper wing of different angles between blowing slot and upper wing surface

    图 19  不同质量流量升力特性对比

    Figure 19.  Lift coefficient comparison of different massflow rates

    图 20  短舱后方机翼上表面剖面马赫数云图

    Figure 20.  Mach number contour on upper-sectional surface of wing behind nacelle

    图 21  吹气缝位置定义

    Figure 21.  Definition of blowing slot position

    图 22  不同吹气缝位置升力特性对比

    Figure 22.  Lift coefficient comparison of different blowing slot positions

    图 23  不同吹气缝位置机翼上表面剖面马赫数云图

    Figure 23.  Mach number contour on the sectional surface of upper wing of different blowing slot positions

    图 24  noblow_nochine和blow_nochine升力特性对比

    Figure 24.  Lift coefficient comparison of noblow_nochine and blow_nochine

    图 25  noblow_nochine和blow_nochine机翼上表面多剖面马赫数云图

    Figure 25.  Mach number contour comparison of noblow_nochine and blow_nochine on the sectional surface of upper wing

    图 26  noblow_nochine和blow_nochine机翼剖面马赫数云图对比

    Figure 26.  Mach number contour comparison of noblow_nochine and blow_nochine at wing section

    图 27  短舱涡流片

    Figure 27.  Nacelle vortex fin

    图 28  chine_noblow和chine_blow升力特性对比

    Figure 28.  Lift coefficient comparison of chine_noblow and chine_blow

    图 29  chine_noblow和chine_blow机翼上表面剖面马赫数云图对比

    Figure 29.  Mach number contour comparison of chine_noblow and chine_blow on the sectional surface of upper wing

    图 30  chine_noblow和chine_blow机翼剖面马赫数云图对比

    Figure 30.  Mach number contour comparison of chine_noblow and chine_blow at wing section

    表  1  不同网格量气动力系数对比

    Table  1.   Comparison of aerodynamic coefficients

    网格量/104 升力系数CL 阻力系数CD
    14.5 2. 770 0.0 495
    26.8 2. 796 0.0 491
    53.6 2. 818 0.0 488
    下载: 导出CSV
  • [1] 王志栋. 翼吊发动机对机翼设计的影响分析[J]. 民用飞机设计与研究, 1997(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ199702003.htm

    WANG Z D. Analysis about influence of wing-mounted engine nacelle on wing design[J]. Civil Aircraft Design and Research, 1997(2): 19-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ199702003.htm
    [2] BABIĆ R Š, TATALOVIĆ M, BAJIĆ J. Air transport competition challenges[J]. International Journal for Traffic and Transport Engineering (IJTTE), 2017, 7(2): 144-163.
    [3] JOHN A. Improving jet engine aerodynamic design via novel component shaping and analysis[D]. Sheffield: University of Sheffield, 2018.
    [4] LANGE F B. Aerodynamic optimization of an UHBR engine position on a representative short range aircraft configuration at cruise flight conditions[C]//2018 Applied Aerodynamics Conference. Reston: AIAA, 2018: 3811.
    [5] SCHLOESSER P, SOUDAKOV V, BAUER M, et al. Active separation control at the pylon-wing junction of a real-scale model[J]. AIAA Journal, 2019, 57(1): 132-141. doi: 10.2514/1.J057345
    [6] 邱亚松, 白俊强, 黄琳, 等. 翼吊发动机短舱对三维增升装置的影响及改善措施研究[J]. 空气动力学学报, 2012, 30(1): 7-13. doi: 10.3969/j.issn.0258-1825.2012.01.002

    QIU Y S, BAI J Q, HUANG L, et al. Study about influence of wing-mounted engine nacelle on high-lift system and improvement measures[J]. Acta Aerodynamica Sinica, 2012, 30(1): 7-13(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.01.002
    [7] 白俊强, 刘南, 邱亚松, 等. 民用运输机短舱涡流片设计研究[J]. 空气动力学学报, 2014, 32(2): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201402009.htm

    BAI J Q, LIU N, QIU Y S, et al. The design of nacelle chine in large civil transport aircraft[J]. Acta Aerodynamica Sinica, 2014, 32(2): 190-196(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201402009.htm
    [8] 白俊强, 刘南, 邱亚松, 等. 大型民用运输机短舱涡流片增升效率以及参数影响研究[J]. 西北工业大学学报, 2013, 31(4): 8. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201304006.htm

    BAI J Q, LIU N, QIU Y S, et al. Investigation on influence of nacelle chine of large civil transport aircraft on high-lift efficiency and on influence of relevant parameters[J]. Journal of Northwestern Polytechnical University, 2013, 31(4): 8(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201304006.htm
    [9] SAVONI L, RUDNIK R. Pylon design for a short range transport aircraft with over-the-wing mounted UHBR engines[C]//2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 11.
    [10] PACK MELTON L G, KOKLU M, ANDINO M Y, et al. Active flow control for trailing edge flap separation[C]//2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 1799.
    [11] WIERACH P, PETERSEN J, SINAPIUS M. Design and experimental characterization of an actuation system for flow control of an internally blown coanda flap[J]. Aerospace, 2020, 7(3): 29. doi: 10.3390/aerospace7030029
    [12] LI J, GONG Z B, ZHANG H, et al. Numerical investigation of powered high-lift model with externally blown flap[J]. Journal of Aircraft, 2017, 54(4): 1539-1551. doi: 10.2514/1.C034270
    [13] BECK N, RADESPIEL R, LENFERS C, et al. Aerodynamic effects of propeller slipstream on a wing with circulation control by internally blown flaps[C]//2014 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2014: 407.
    [14] TAVERNETTI L. The C-17-modern airlift technology[C]//Aerospace Design Conference. Reston: AIAA, 1992: 1262.
    [15] ANDINO M Y, LIN J C, ROMAN S, et al. Active flow control on vertical tail models[J]. AIAA Journal, 2019, 57(8): 3322-3338. doi: 10.2514/1.J057876
    [16] FRICKE S, CIOBACA V, WILD J, et al. Numerical studies of active flow control applied at the engine-wing junction[C]//Symposium on Field of the Research Unit 1066. Berlin: Springer, 2014: 397-411.
    [17] 张扬. 一种适用于飞行器外流场模拟的新型湍流模型[D]. 西安: 西北工业大学, 2014.

    ZHANG Y. A new turbulence model for external flow simulation of aircraft[D]. Xi'an: Northwestern Polytechnical University, 2014(in Chinese).
    [18] MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4: 101-109.
    [19] RADESPIEL R, BURNAZZI M, CASPER M, et al. Active flow control for high lift with steady blowing[J]. The Aeronautical Journal, 2016, 120(1223): 171-200. doi: 10.1017/aer.2015.7
    [20] 邱亚松, 白俊强, 李亚林, 等. 复杂几何细节对增升装置气动性能影响研究[J]. 航空学报, 2012, 33(3): 421-429. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201203006.htm

    QIU Y S, BAI J Q, LI Y L, et al. Study on influence of complex geometry details on the aerodynamic performance of high-lift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 421-429(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201203006.htm
    [21] ENGLAR R J, JONES G S, ALLAN B G, et al. 2-D circulation control airfoil benchmark experiments intended for CFD code validation[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 902.
  • 加载中
图(30) / 表(1)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  113
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-15
  • 录用日期:  2020-10-25
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答