留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于攻击距离的对抗样本攻击组筛选方法

刘洪毅 方宇彤 文伟平

刘洪毅, 方宇彤, 文伟平等 . 一种基于攻击距离的对抗样本攻击组筛选方法[J]. 北京航空航天大学学报, 2022, 48(2): 339-347. doi: 10.13700/j.bh.1001-5965.2020.0529
引用本文: 刘洪毅, 方宇彤, 文伟平等 . 一种基于攻击距离的对抗样本攻击组筛选方法[J]. 北京航空航天大学学报, 2022, 48(2): 339-347. doi: 10.13700/j.bh.1001-5965.2020.0529
LIU Hongyi, FANG Yutong, WEN Weipinget al. A method for filtering the attack pairs of adversarial examples based on attack distance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 339-347. doi: 10.13700/j.bh.1001-5965.2020.0529(in Chinese)
Citation: LIU Hongyi, FANG Yutong, WEN Weipinget al. A method for filtering the attack pairs of adversarial examples based on attack distance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 339-347. doi: 10.13700/j.bh.1001-5965.2020.0529(in Chinese)

一种基于攻击距离的对抗样本攻击组筛选方法

doi: 10.13700/j.bh.1001-5965.2020.0529
基金项目: 

国家自然科学基金 U1736218

详细信息
    通讯作者:

    文伟平, E-mail: weipingwen@ss.pku.edu.cn

  • 中图分类号: TP319

A method for filtering the attack pairs of adversarial examples based on attack distance

Funds: 

National Natural Science Foundation of China U1736218

More Information
  • 摘要:

    黑盒对抗样本生成过程中通常会指定1个攻击组,包括1个原始样本和1个目标样本,使得生成的对抗样本与原始样本范数差别不大,但被分类器识别为目标样本的分类。针对攻击组的攻击难度不同导致攻击不稳定的问题,以图像识别领域为例,设计了基于决策边界长度的攻击距离度量方法,为攻击组的攻击难易程度提供了度量方法。在此基础上,设计了基于攻击距离的对抗样本攻击组筛选方法,在攻击开始前就筛去难以攻击的攻击组,从而实现在不修改攻击算法的前提下,提升攻击效果。实验表明:相比于筛选前的攻击组,筛选后的攻击组的总体效果提升了42.07%,攻击效率提升了24.99%,方差降低了76.23%。利用攻击组的对抗样本生成方法在攻击前先进行攻击组筛选,可以稳定并提高攻击效果。

     

  • 图 1  基于攻击距离的对抗样本攻击组筛选方法框架

    Figure 1.  Framework of adversarial example attack pairs filtering method based on attack distance

    图 2  NES Attack对抗样本生成流程

    Figure 2.  Flowchart of NES Attack adversarial examples generation

    图 3  攻击速度

    Figure 3.  Attack speed

    图 4  基于采样的决策边界识别方法示意图

    Figure 4.  Schematic diagram of decision boundary recognition method based on sampling

    图 5  攻击距离估算示意图

    Figure 5.  Schematic diagram of attack distance estimation

    图 6  R值影响

    Figure 6.  Influence diagram of R's value

    表  1  筛选前后查询次数对比

    Table  1.   Comparison of query times before and after filtering

    场景 指标 NES Attack Filtered NES CMA Attack Filtered CMA 平均提升效果/%
    场景1 平均值 1.01×105 7.87×104 5.81×104 2.88×104 36.25
    中位数 9.64×104 7.22×104 4.74×104 2.74×104 33.65
    方差 1.51×109 1.16×109 1.32×109 9.36×107 58.04
    场景2 平均值 9.79×104 9.66×104 4.75×104 4.26×104 5.82
    中位数 9.63×104 9.66×104 4.33×104 4.26×104 0.65
    方差 1.00×109 4.20×108 2.99×108 1.14×107 77.09
    场景3 平均值 9.76×104 6.64×104 5.92×104 3.05×104 40.22
    中位数 8.98×104 6.64×104 5.14×104 3.05×104 33.36
    方差 9.52×108 3.59×106 6.22×108 7.79×107 93.55
    下载: 导出CSV
  • [1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [2] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1-9.
    [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-09-21]. https://arxiv.org/abs/1409.1556.
    [4] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
    [5] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 2261-2269.
    [6] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. (2014-02-19)[2020-09-21]. https://arxiv.org/abs/1312.6199.
    [7] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. (2015-05-20)[2020-09-21]. https://arxiv.org/abs/1412.6572.
    [8] KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial machine learning at scale[EB/OL]. (2017-02-11)[2020-09-21]. https://arxiv.org/abs/1611.01236.
    [9] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/OL]. (2019-09-04)[2020-09-21]. https://arxiv.org/abs/1706.06083.
    [10] DONG Y P, LIAO F Z, PANG T, et al. Boosting adversarial attacks with momentum[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 9185-9193.
    [11] CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//2017 IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE Press, 2017: 39-57.
    [12] PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]//2016 IEEE European Symposium on Security and Privacy (EuroS&P). Piscataway: IEEE Press, 2016: 372-387.
    [13] MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 2574-2582.
    [14] PAPERNOT N, MCDANIEL P, GOODFELLOW I, et al. Practical black-box attacks against deep learning systems using adversarial examples[EB/OL]. (2017-05-19)[2020-09-21]. https://arxiv.org/abs/1602.02697.
    [15] XIE C H, ZHANG Z S, ZHOU Y Y, et al. Improving transferability of adversarial examples with input diversity[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 2725-2734.
    [16] TRAMER F, KURAKIN A, PAPERNOT N, et al. Ensemble adversarial training: Attacks and defenses[EB/OL]. (2020-04-26)[2020-09-21]. https://arxiv.org/abs/1705.07204.
    [17] ILYAS A, ENGSTROM L, ATHALYE A, et al. Black-box adversarial attacks with limited queries and information[C]//International Conference on Machine Learning, 2018: 2137-2146.
    [18] KUANG X H, LIU H Y, WANG Y, et al. A CMA-ES-based adversarial attack on black-box deep neural networks[J]. IEEE Access, 2019, 7: 172938-172947. doi: 10.1109/ACCESS.2019.2956553
    [19] DONG Y P, SU H, WU B Y, et al. Efficient decision-based black-box adversarial attacks on face recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 7706-7714.
    [20] BRENDEL W, RAUBER J, BETHGE M. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models[EB/OL]. (2018-02-16)[2020-09-21]. https://arxiv.org/abs/1712.04248.
    [21] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [22] HELMSTAEDTER M, BRIGGMAN K L, TURAGA S C, et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina[J]. Nature, 2013, 500(7461): 168-174. doi: 10.1038/nature12346
    [23] XIONG H Y, ALIPANAHI B, LEE L J, et al. The human splicing code reveals new insights into the genetic determinants of disease[J]. Science, 2015, 347(6218): 1254806. doi: 10.1126/science.1254806
    [24] HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. doi: 10.1109/MSP.2012.2205597
    [25] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Annual Conference on Neural Information Processing Systems (NeurIPS). Cambridge: MIT Press, 2014: 3104-3112.
    [26] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
    [27] GIUSTI A, GUZZI J, CIRŞAN D C, et al. A machine learning approach to visual perception of forest trails for mobile robots[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 661-667. doi: 10.1109/LRA.2015.2509024
    [28] MIDDLEHURST C. China unveils world's first facial recognition atm[EB/OL]. (2015-01-01)[2020-09-01]. https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/China-unveils-worlds-first-facial-recognition-ATM.html.
    [29] 刘恒, 吴德鑫, 徐剑. 基于生成式对抗网络的通用性对抗扰动生成方法[J]. 信息网络安全, 2020, 20(5): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XXAQ202005008.htm

    LIU H, WU D X, XU J. Generating universal adversarial perturbations with generative adversarial networks[J]. Netinfo Security, 2020, 20(5): 57-64(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXAQ202005008.htm
    [30] HUANG Q, KATSMAN I, GU Z Q, et al. Enhancing adversarial example transferability with an intermediate level attack[C]//2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 4732-4741.
    [31] WIERSTRA D, SCHAUL T, PETERS J, et al. Natural evolution strategies[C]//2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Piscataway: IEEE Press, 2008: 3381-3387.
    [32] HANSEN N. The CMA evolution strategy: A tutorial[EB/OL]. (2016-04-04)[2020-09-21]. https://arxiv.org/abs/1604.00772.
    [33] 侯留洋, 罗森林, 潘丽敏, 等. 融合多特征的Android恶意软件检测方法[J]. 信息网络安全, 2020, 20(1): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XXAQ202001012.htm

    HOU L Y, LUO S L, PAN L M, et al. Multi-feature Android malware detection method[J]. Netinfo Security, 2020, 20(1): 67-74(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXAQ202001012.htm
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  15
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 录用日期:  2020-11-06
  • 网络出版日期:  2022-02-20

目录

    /

    返回文章
    返回
    常见问答