留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于区间估计与透射率自适应约束的去雾算法

杨燕 张金龙 张浩文

杨燕, 张金龙, 张浩文等 . 基于区间估计与透射率自适应约束的去雾算法[J]. 北京航空航天大学学报, 2022, 48(1): 15-26. doi: 10.13700/j.bh.1001-5965.2020.0547
引用本文: 杨燕, 张金龙, 张浩文等 . 基于区间估计与透射率自适应约束的去雾算法[J]. 北京航空航天大学学报, 2022, 48(1): 15-26. doi: 10.13700/j.bh.1001-5965.2020.0547
YANG Yan, ZHANG Jinlong, ZHANG Haowenet al. Dehazing algorithm based on interval estimation and adaptive constraints of transmittance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 15-26. doi: 10.13700/j.bh.1001-5965.2020.0547(in Chinese)
Citation: YANG Yan, ZHANG Jinlong, ZHANG Haowenet al. Dehazing algorithm based on interval estimation and adaptive constraints of transmittance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 15-26. doi: 10.13700/j.bh.1001-5965.2020.0547(in Chinese)

基于区间估计与透射率自适应约束的去雾算法

doi: 10.13700/j.bh.1001-5965.2020.0547
基金项目: 

国家自然科学基金 61561030

甘肃省高等学校产业支撑计划 2021CYZC-04

甘肃省优秀研究生创新之星项目 2021CXZX-607

兰州交通大学教改基金 JG201928

详细信息
    通讯作者:

    杨燕, E-mail: yangyantd@mail.lzjtu.cn

  • 中图分类号: TP391.41

Dehazing algorithm based on interval estimation and adaptive constraints of transmittance

Funds: 

National Natural Science Foundation of China 61561030

College Industry Support Plan Project of Gansu Provincial Department of Education 2021CYZC-04

Excellent Graduate Student Innovation Star Project in Gansu Province 2021CXZX-607

Research Fund of Teaching Reform Project of Lanzhou Jiaotong University JG201928

More Information
  • 摘要:

    针对去雾算法透射率估计不足与结果偏色等问题,提出了一种基于最小通道区间估计与透射率自适应约束模型的图像去雾算法。首先,采用不同尺寸最大值操作得到有雾图像的亮通道,并结合均值处理和频域滤波得到大气光估计;其次,从大气成像理论出发,以有雾图像最小通道为约束,分别以平面模型和自适应映射模型拟合无雾图像最小通道上下边界,并获得无雾图像最小通道和透射率初始估计;最后,对透射率作滤波平滑与自适应边界约束,得到优化透射率,并根据大气散射模型得到复原结果。实验表明:所提算法复原结果颜色自然、亮度适宜、去雾彻底、细节信息丰富且时间复杂度较低,有效解决了透射率估计不足和偏色等问题。

     

  • 图 1  本文算法原理框图

    Figure 1.  Block diagram of principle of proposed algorithm

    图 2  大气光对比

    Figure 2.  Comparison of atmospheric light

    图 3  大气散射模型空间分布与简化分布

    Figure 3.  Spatial distribution and simplified distribution of atmospheric scattering model

    图 4  映射模型与其导数图形

    Figure 4.  Mapping model and its derivative graph

    图 5  最小通道真实值与本文拟合结果对比

    Figure 5.  Comparison of true value of minimum channel with fitting results of this paper

    图 6  含天空区域图像透射率与复原结果对比

    Figure 6.  Comparison of transmittance and restoration results in sky-images

    图 7  不含天空区域图像透射率与复原结果对比

    Figure 7.  Comparison of transmittance and restoration results in no-sky-images

    图 8  本文透射率与标准透射率对比

    Figure 8.  Comparison of transmittance in this paper and standard transmittance

    图 9  不含天空区域复原结果对比

    Figure 9.  Comparison of restoration results without sky area

    图 10  含天空区域复原结果对比

    Figure 10.  Comparison of restoration results with sky area

    图 11  RESIDE测试集验证结果

    Figure 11.  RESIDE test set verification results

    图 12  Middlebury测试集验证结果

    Figure 12.  Middlebury test set verification results

    表  1  远近景区域误差ω

    Table  1.   Near- and far-field regional error ω

    远近景区域 ω
    图像1 图像2 图像3 图像4 图像5
    近景 0.059 3 0.030 8 0.009 8 0.010 9 0.013 8
    中景 0.056 1 0.034 3 0.016 4 0.012 9 0.016 2
    远景 0.041 2 0.020 4 0.012 6 0.020 1 0.019 3
    下载: 导出CSV

    表  2  MSE指标对比

    Table  2.   Comparison of MSE indicators

    算法 MSE
    合成有雾图像1 合成有雾图像2 合成有雾图像3 合成有雾图像4 合成有雾图像5
    DCP算法 0.591 9 0.815 7 0.640 7 0.039 8 0.022 4
    本文算法 0.028 9 0.069 8 0.049 9 0.038 1 0.004 2
    下载: 导出CSV

    表  3  真实有雾图像复原结果客观指标对比

    Table  3.   Comparison of objective indicators of true hazy image restoration results

    指标 DCP算法[1] CAP算法[6] Haze Removal算法[5] Dehaze-Net算法[7] AOD-Net算法[9] 多尺度提取算法[8] 本文算法
    HCC 0.123 7 0.114 2 0.139 5 0.139 5 0.120 6 0.126 8 0.149 3
    E 7.024 2 7.244 8 7.279 8 6.970 4 6.909 4 7.065 0 7.580 8
    CG 0.297 4 0.301 8 0.384 9 0.312 7 0.320 6 0.374 7 0.386 5
    UQI 0.701 4 0.728 1 0.849 7 0.700 9 0.712 4 0.836 3 0.872 7
    VCM 57.98 51.49 60.79 55.74 56.01 57.88 60.62
    T/s 2.096 1.180 1.274 2.843 2.874 2.979 1.396
    注:黑体数据表示最优值。
    下载: 导出CSV

    表  4  Middlebury测试集复原结果客观指标对比

    Table  4.   Comparison of objective indicators of Middlebury test set restoration results

    指标 DCP算法[1] CAP算法[6] Haze Removal算法[5] Dehaze-Net算法[7] 多尺度提取算法[8] AOD-Net算法[9] 本文算法
    SSIM 0.974 5 0.962 1 0.982 2 0.970 6 0.981 7 0.980 9 0.982 4
    PSNR 58.146 7 57.695 4 60.687 6 59.124 8 60.677 4 60.230 2 60.695 9
    下载: 导出CSV

    表  5  RESIDE测试集复原结果客观指标对比

    Table  5.   Comparison of objective indicators of RESIDE test set restoration results

    指标 DCP算法[1] CAP算法[6] Haze Removal算法[5] Dehaze-Net算法[7] 多尺度提取算法[8] AOD-Net算法[9] 本文算法
    SSIM 0.924 7 0.974 5 0.973 6 0.974 5 0.954 8 0.950 6 0.974 9
    PSNR 57.603 8 58.146 7 59.274 1 58.146 7 58.298 7 58.092 7 59.980 6
    下载: 导出CSV
  • [1] HE K M, SUN J, TANG X O, et al. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    [2] TAN R. Visibility in bad weather from a single image[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2008: 1-8.
    [3] MENG G, WANG Y, DUAN J, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]//IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2014: 617-624.
    [4] XU Y, GUO X, WANG H, et al. Single image haze removal using light and dark channel prior[C]//IEEE/CIC International Conference on Communication in China (ICCC). Piscataway: IEEE Press, 2016: 1-6.
    [5] YANG Y, WANG Z. Haze Removal: Push DCP at the edge[J]. IEEE Signal Processing Letters, 2020, 27: 1405-1409. doi: 10.1109/LSP.2020.3013741
    [6] ZHU Q, MAI J, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533. doi: 10.1109/TIP.2015.2446191
    [7] CAI B, XU X, JIA K, et al. Dehaze-Net: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198. doi: 10.1109/TIP.2016.2598681
    [8] REN W Q, LIU S, ZHANG H, et al. Single image dehazingvia multi-scale convolutional neural-networks[C]//ECCV 2016: Computer Vision, 2016: 154-169.
    [9] LI B Y, PENG X, WANG Z, et al. AOD-Net: All-in-one de-hazing network[C]//IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 4780-4788.
    [10] LIU R, FAN X, HOU M, et al. Learning aggregated transmission propagation networks for haze removal and beyond[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10): 2973-2986. doi: 10.1109/TNNLS.2018.2862631
    [11] QIAN W, ZHOU C, ZHANG D. CIASM-Net: A novel convolutional neural network for dehazing image[C]//IEEE International Conference on Computer and Communication Systems (ICCCS). Piscataway: IEEE Press, 2020: 329-333.
    [12] LI C, GUO C, GUO J P. PDR-Net: Perception-inspired single image dehazing network with refinement[J]. IEEE Transactions on Multimedia, 2020, 22(3): 704-716. doi: 10.1109/TMM.2019.2933334
    [13] ZHANG J, TAO D. FAMED-Net: A fast and accurate multi-scale end-to-end dehazing network[J]. IEEE Transactions on Image Processing, 2020, 29: 72-84. doi: 10.1109/TIP.2019.2922837
    [14] WANG A N, WANG W H, LIU J L, et al. AIP-Net: Image-to-image single image dehazing with atmospheric illumination prior[J]. IEEE Transactions on Image Processing, 2019, 28(1): 381-393. doi: 10.1109/TIP.2018.2868567
    [15] LI R, PAN J, HE M, et al. Task-oriented network for image dehazing[J]. IEEE Transactions on Image Processing, 2020, 29: 6523-6534. doi: 10.1109/TIP.2020.2991509
    [16] QIN X, WANG Z, BAI Y, et al. FFA-Net: Feature fusion attention network for single image dehazing[C]//Association for the Advance of Artificial Intelligence(AAAI), 2020: 11908-11915.
    [17] SULAMI M, GLATZER I, FATTAL R, et al. Automatic recovery of the atmospheric light in hazy images[C]//IEEE International Conference on Computational Photography. Piscataway: IEEE Press, 2014: 1-11.
    [18] SUN W, WANG H, SUN C, et al. Fast single image haze removal via local atmospheric light veil estimation[J]. Computers & Electrical Engineering, 2015, 46: 371-383.
    [19] HE K, JIAN S, TANG X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. doi: 10.1109/TPAMI.2012.213
    [20] BI G, REN J, FU T, et al. Image dehazing based on accurate estimation of transmission in the atmospheric scattering model[J]. IEEE Photonics Journal, 2017, 9(4): 1-18.
    [21] MIM X, ZHAI G, GU K, et al. Quality evaluation of image dehazing methods using synthetic hazy images[J]. IEEE Transactions on Multimedia, 2019, 21(9): 2319-2333. doi: 10.1109/TMM.2019.2902097
    [22] 郭璠, 蔡自兴. 图像去雾算法清晰化效果客观评价方法[J]. 自动化学报, 2012, 38(9): 1410-1419. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201209004.htm

    GUO F, CAI Z X. Objective evaluation method of image dehazing algorithm sharpening effect[J]. Acta Automatica Sinica, 2012, 38(9): 1410-1919(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201209004.htm
    [23] 杨燕, 张得欣, 岳辉. 基于最小值通道与对数衰减的图像融合去雾算法[J]. 北京航空航天大学学报, 2020, 46(10): 1844-1852. doi: 10.13700/j.bh.1001-5965.2019.0552

    YANG Y, ZHANG D X, YUE H. Image fusion dehazing algorithm based on minimum channel and logarithmic attenuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1844-1852(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0552
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  41
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 录用日期:  2021-02-06
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答