留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Durbin法在阻尼梁动响应求解中的运用分析

张夏阳 张凯 招启军 王博

张夏阳, 张凯, 招启军, 等 . Durbin法在阻尼梁动响应求解中的运用分析[J]. 北京航空航天大学学报, 2022, 48(1): 67-78. doi: 10.13700/j.bh.1001-5965.2020.0550
引用本文: 张夏阳, 张凯, 招启军, 等 . Durbin法在阻尼梁动响应求解中的运用分析[J]. 北京航空航天大学学报, 2022, 48(1): 67-78. doi: 10.13700/j.bh.1001-5965.2020.0550
ZHANG Xiayang, ZHANG Kai, ZHAO Qijun, et al. Application analysis of Durbin method in solving dynamic response of damped beam[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 67-78. doi: 10.13700/j.bh.1001-5965.2020.0550(in Chinese)
Citation: ZHANG Xiayang, ZHANG Kai, ZHAO Qijun, et al. Application analysis of Durbin method in solving dynamic response of damped beam[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 67-78. doi: 10.13700/j.bh.1001-5965.2020.0550(in Chinese)

Durbin法在阻尼梁动响应求解中的运用分析

doi: 10.13700/j.bh.1001-5965.2020.0550
基金项目: 

国家自然科学基金 12032012

国家重点实验室基金 61422200101

江苏高校优势学科建设工程 

详细信息
    通讯作者:

    招启军, E-mail: zhaoqijun@nuaa.edu.cn

  • 中图分类号: V214.3+1

Application analysis of Durbin method in solving dynamic response of damped beam

Funds: 

National Natural Science Foundation of China 12032012

National Key Laboratory Foundation of China 61422200101

Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • 摘要:

    运用铁木辛柯梁理论和K-V阻尼理论,研究了非比例阻尼梁在冲击载荷作用下的频域振动求解方法。推导采用了传统拉普拉斯正变换和基于Durbin公式的拉普拉斯反变换策略(统称拉普拉斯法),发展了阻尼梁系统的动力学方程解法。拉普拉斯法的推演同时涵盖了3种典型的梁边界条件,具有广泛的适用性。数值法的验证采用了特殊构造的比例阻尼点条件,并与基于模态叠加法的求解结果进行了对比分析,且数值算例充分考虑了数值参数和系统参数的影响。计算结果表明:在不同边界条件和受载状态下,拉普拉斯法与模态叠加法均能合理地计算出基本阻尼梁系统的动响应曲线,且两者的求解精度保持在同一量级;同时,捕捉到拉普拉斯法的求解精度会受到系统长细比等参数的影响。拉普拉斯法具有比传统实、复模态叠加法更易操作的特性,但其精度受到了算法固有参数和阶跃外载型式的影响,稳定性仍需进一步提高。

     

  • 图 1  梁系统总体框架

    Figure 1.  General framework of beam system

    图 2  d*=0.5,Lr=10,X=0.2状态下系统总响应

    Figure 2.  Curves of total dynamic responses of system under d*=0.5, Lr=10 and X=0.2 conditions

    图 3  d*=0.5,Lr=10,X=0.8状态下系统总响应

    Figure 3.  Curves of total dynamic responses of system under d*=0.5, Lr=10 and X=0.8 conditions

    图 4  d*=0.5,Lr=100,X=0.2状态下系统总响应

    Figure 4.  Curves of dynamic responses in d*=0.5, Lr=100 and X=0.2 conditions

    图 5  d*=0.5,Lr=100,X=0.8状态下系统总响应

    Figure 5.  Curves of total dynamic responses of system under d*=0.5, Lr=100 and X=0.8 conditions

    图 6  d*=0.25,Lr=10,X=0.2状态下系统总响应

    Figure 6.  Curves of total dynamic responses of system under d*=0.25, Lr=10 and X=0.2 conditions

    图 7  d*=0.25,Lr=10,X=0.8状态下系统总响应

    Figure 7.  Curves of total dynamic responses of system under d*=0.25, Lr=10 and X=0.8 conditions

    图 8  d*=0.25,Lr=100,X=0.2状态下系统总响应

    Figure 8.  Curves of total dynamic responses of system under d*=0.25, Lr=100 and X=0.2 conditions

    图 9  d*=0.25,Lr=100,X=0.8状态下系统总响应

    Figure 9.  Curves of total dynamic responses of system under d*=0.25, Lr=100 and X=0.8 conditions

  • [1] LABUSCHAGNE A, RENSBURG N F J V, MERWE A J V D. Comparison of linear beam theories[J]. Mathematical and Computer Modelling, 2009, 49(1-2): 20-30. doi: 10.1016/j.mcm.2008.06.006
    [2] STEPHEN N G. The second spectrum of Timoshenko beam theory—Further assessment[J]. Journal of Sound and Vibration, 2006, 292(1-2): 372-389. doi: 10.1016/j.jsv.2005.08.003
    [3] HAN S M, BENAROYA H, WEI T. Dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound and Vibration, 1999, 225(5): 935-988. doi: 10.1006/jsvi.1999.2257
    [4] KOCATVRK T, SIMSEK M. Dynamic analysis of eccentrically prestressed viscoelastic Timoshenko beams under a moving harmonic load[J]. Computers and Structures, 2006, 84(31): 2113-2127.
    [5] 邢誉峰. 有限长Timoshenko梁弹性碰撞接触瞬间的动态特性[J]. 力学学报, 1999, 31(1): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199901007.htm

    XING Y F. The characteristics of Timoshenko beam during the process of elastic impact and contact[J]. Acta Mechanica Sinica, 1999, 31(1): 68-74(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199901007.htm
    [6] SHIM V P W, TOH S L, QUAH S E. Impact-induced flexural waves in a Timoshenko beam-Shearographic detection and analysis[J]. Experimental Mechanics, 1994, 34(4): 340-348. doi: 10.1007/BF02325149
    [7] YAMAMOTO S, SATO K, KOSEKI H. A study on lateral impact of Timoshenko beam[J]. Computational Mechanics, 1990, 6(2): 101-108. doi: 10.1007/BF00350516
    [8] DADFARNIA M, JALILI N, ESMAILZADEH E A. Comparative study of the Galerkin approximation utilized in the Timoshenko beam theory[J]. Journal of Sound and Vibration, 2005, 280(3-5): 1132-1142. doi: 10.1016/j.jsv.2004.02.028
    [9] YAMANAKA K, HEPPLER G R, HUSEYIN K. The stability of a flexible link with a tip rotor and a compressive tip load[J]. IEEE Transactions on Robotics and Automation, 1996, 11(6): 882-887.
    [10] AZAM S E, MOFID M, KHORASKANI R A. Dynamic response of Timoshenko beam under moving mass[J]. Scientia Iranica, 2013, 20(1): 50-56.
    [11] XING Y, QIAO Y, ZHU D. Elastic impact on finite Timoshenko beam[J]. Acta Mechanica Sinica, 2002, 18(3): 252-263. doi: 10.1007/BF02487953
    [12] 周健斌, 章俊杰, 孟光. 计及陀螺效应的翼吊式机翼-发动机系统结构动力学特性研究[J]. 振动与冲击, 2012, 31(6): 145-149. doi: 10.3969/j.issn.1000-3835.2012.06.030

    ZHOU J B, ZHANG J J, MENG G. Structural dynamic characteristics of a wing-engine system with gyro effects[J]. Journal of Vibration and Shock, 2012, 31(6): 145-149(in Chinese). doi: 10.3969/j.issn.1000-3835.2012.06.030
    [13] 赵永辉. 气动弹性力学与控制[M]. 北京: 科学出版社, 2007.

    ZHAO Y H. Aeroelastic mechanics and control[M]. Beijing: Science Press, 2007(in Chinese).
    [14] LI L, HEPPLER G R, HUSEYIN K. Stability of a flexible link with an arbitrarily oriented tip rotor and a conservative tip load[C]//IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2000, 2: 1472-1477.
    [15] 李攀. 旋翼非定常自由尾迹及高置信度直升机飞行力学建模研究[D]. 南京: 南京航空航天大学, 2010.

    LI P. Rotor unsteady free-vortex wake model and investigation on high-fidelity modeling of helicopter flight dynamic[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
    [16] FRIEDMANN P P, STRAUB F. Application of the finite element method to rotary-wing aeroelasticity[J]. Journal of the American Helicopter Society, 1978, 25(1): 36-44.
    [17] SU Y C, MA C C. Theoretical analysis of transient waves in a simply-supported Timoshenko beam by ray and normal mode methods[J]. International Journal of Solids and Structures, 2011, 48(3): 535-552.
    [18] DAVIES B, MARTIN B. Numerical inversion of the Laplace transform: A survey and comparison of methods[J]. Journal of Computational Physics, 1979, 33(1): 1-32. doi: 10.1016/0021-9991(79)90025-1
    [19] MILLER M K, GUY W T. Numerical inversion of the Laplace transform by use of Jacobi polynomials[J]. SIAM Journal on Numerical Analysis, 1966, 3(4): 624-635. doi: 10.1137/0703055
    [20] PIESSENS R. Some aspects of Gaussian quadrature formulae for the numerical inversion of the Laplace transform[J]. Computer Journal, 1971, 14(4): 433-436. doi: 10.1093/comjnl/14.4.433
    [21] DUFFY D G. On the numerical inversion of Laplace transforms: Comparison of three new methods on characteristic problems from applications[J]. ACM Transactions on Mathematical Software, 1993, 19(3): 333-359. doi: 10.1145/155743.155788
    [22] DUBNER H, ABATE J. Numerical inversion of Laplace transforms by relating them to the finite fourier cosine transform[J]. Journal of the ACM, 1968, 15(1): 115-123. doi: 10.1145/321439.321446
    [23] DURBIN F. Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method[J]. Computer Journal, 1974, 17(4): 371-376. doi: 10.1093/comjnl/17.4.371
    [24] HU M, WANG A, ZHANG X. Approximate analytical solutions and experimental analysis for transient response of constrained damping cantilever beam[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1359-1370. doi: 10.1007/s10483-010-1368-9
    [25] GU L, QIN Z, CHU F. Analytical analysis of the thermal effect on vibrations of a damped Timoshenko beam[J]. Mechanical Systems and Signal Processing, 2015, 60-61(52): 619-643.
    [26] ZHANG X, ZHU M, LIANG H. Dynamic analysis of the continuous fluid-structure system based on Timoshenko model and considering damping[C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2017: 1-17.
    [27] JENSEN J J. On the shear coefficient in Timoshenko's beam theory[J]. Journal of Applied Mechanics, 1966, 33(2): 621-635.
    [28] ZHAO H L, LIU K S, ZHANG C G. Stability for the Timoshenko beam system with local Kelvin-Voigt damping[J]. Acta Mathematica Sinica, 2005, 21(3): 655-666. doi: 10.1007/s10114-003-0256-4
    [29] SU Y C, MA C C. Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods[J]. International Journal of Solids and Structures, 2012, 49(9): 1158-1176. doi: 10.1016/j.ijsolstr.2012.01.013
    [30] BOLEY B, CHAO C. Some solutions of the Timoshenko beam equations[J]. Journal of Applied Mechanics, 1955, 22(4): 579-586. doi: 10.1115/1.4011158
    [31] 张夏阳, 祝明, 武哲. 基于K-V阻尼模型的铁木辛柯梁振动响应分析[J]. 北京航空航天大学学报, 2018, 44(3): 500-507. doi: 10.13700/j.bh.1001-5965.2017.0196

    ZHANG X Y, ZHU M, WU Z. Response analysis of Timoshenko beam based on K-V damping model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 500-507(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0196
  • 加载中
图(9)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  49
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 录用日期:  2020-12-11
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答