北京航空航天大学学报 ›› 2022, Vol. 48 ›› Issue (2): 311-323.doi: 10.13700/j.bh.1001-5965.2020.0557

• 论文 • 上一篇    下一篇

基于能源分解的用户用电行为模式分析

卢瑞瑞, 于海阳, 杨震, 赖英旭, 杨石松, 周明   

  1. 北京工业大学 信息学部, 北京 100124
  • 收稿日期:2020-09-27 发布日期:2022-03-03
  • 通讯作者: 杨震 E-mail:yangzhen@bjut.edu.cn
  • 基金资助:
    国家自然科学基金(61671030);北京市长城学者计划(CIT&TCD20190308);中国博士后科学基金(2019M660377)

User electricity consumption behavior mode analysis based on energy decomposition

LU Ruirui, YU Haiyang, YANG Zhen, LAI Yingxu, YANG Shisong, ZHOU Ming   

  1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • Received:2020-09-27 Published:2022-03-03
  • Supported by:
    National Natural Science Foundation of China (61671030); Beijing Great Wall Scholar (CIT&TCD20190308); China Postdoctoral Science Foundation (2019M660377)

摘要: 随着智能电网的普及和大数据技术的发展,利用用电数据分析用户的用电行为越来越受到关注,现存的能源分解方法无法满足实际应用中对分辨率和分解准确率的高要求,以及聚类分析方法过于粗糙没有充分挖掘每类电器的用电特点。提出了基于能源分解的用户用电行为分析方法。在判别式稀疏编码算法模型的基础上,针对L0正则项不易求解、L1正则项稀疏约束效果不理想的问题,提出用L1/2正则项稀疏约束进行能源分解,并且把用户之间的同质性作为正则项加入基础模型来修正模型的性能。基于能源分解的结果,使用用户单类电器的用电特征代替总用电特征精细化分析用户的用电行为,并改进传统的K-Mean聚类算法进行实验验证。实验结果表明:所提出的基于L1/2正则项稀疏约束和同质性约束的能源分解方法相比于传统判别式稀疏编码算法,能够有效提升能源分解的准确率。同时,基于能源分解的用户用电行为聚类分析效果也有明显提升。

关键词: 智能电网, 能源分解, 聚类分析, 非负矩阵分解, 同质性关系

Abstract: With the popularization of smart grids and the development of big data technology, more and more attention has been paid to the analysis of users' electricity consumption behavior through electricity consumption data. The existing energy decomposition methods cannot meet the high requirements for resolution and decomposition accuracy in practical applications, and the cluster analysis method is too rough and does not fully show the electricity consumption characteristics of each type of electrical appliances. In view of this, this paper proposes an analysis method of users' electricity consumption behavior based on energy decomposition. Based on the discriminative sparse coding algorithm model, firstly, to solve the problem that the regular term of L0 is not easy to solve and the effect of the sparse constraint of L1 regular term is not ideal, we propose to use the sparse constraint of L1/2 regular term to perform energy decomposition, and add the homogeneity between users as a regular term to the basic model to modify the performance of the model. Secondly, based on the results of energy decomposition, we use the electricity consumption characteristics of a user's single-type electrical appliances instead of the total electricity consumption characteristics to refine the analysis of user's electricity consumption behavior, and improve the traditional K-Mean clustering algorithm for experimental verification. The experimental results show that the energy decomposition method based on the sparse constraint of L1/2 regular term and the constraint of homogeneity can effectively improve the accuracy of energy decomposition compared with the traditional discriminative sparse coding method. At the same time, the result of cluster analysis of users' electricity consumption behavior based on energy decomposition is also significantly improved.

Key words: smart grid, energy decomposition, cluster analysis, nonnegative matrix decomposition, homogeneous relationship

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发