[1] DIECJMANN J, COOPERMAN A, BRODRICK J.Efficiency energy.Buildings energy data book[M].Washington, D.C.:US Department of Energy, 2009. [2] 辛苗苗, 张延迟, 解大.基于电力大数据的用户用电行为分析研究综述[J].电气自动化, 2019, 41(1):1-4.XIN M M, ZHANG Y C, XIE D.Summary of researches on consumer behavior analysis based on big power data[J].Electrical Automation, 2019, 41(1):1-4(in Chinese). [3] HART G W.Nonintrusive appliance load monitoring[J].Proceedings of the IEEE, 1992, 80(12):1870-1891. [4] LAUGHMAN C, LEE K, COX R, et al.Power signature analysis[J].IEEE Power and Energy Magazine, 2003, 1(2):56-63. [5] SHAW S R, ABLER C B, LEPARD R F, et al.Instrumentation for high performance nonintrusive electrical load monitoring[J].Journal of Solar Energy Engineering, 1998, 120(3):224-229. [6] BERGES M, GOLDMAN E, MATTHEWS H S, et al.Learning systems for electric consumption of buildings[C]//International Workshop on Computing in Civil Engineering 2009.Reston:American Society of Civil Engineers, 2009:1-10. [7] PATEL S N, ROBERTSON T, KIENTZ J A, et al.At the flick of a switch:Detecting and classifying unique electrical events on the residential power line (nominated for the best paper award)[C]//International Conference on Ubiquitous Computing.Berlin:Springer, 2007:271-288. [8] ZEIFMAN M, ROTH K.Nonintrusive appliance load monitoring:Review and outlook[J].IEEE Transactions on Consumer Electronics, 2011, 57(1):76-84. [9] KOLTER J, BATRA S, NG A.Energy disaggregation via discriminative sparse coding[J].Advances in Neural Information Processing Systems, 2010, 23:1153-1161. [10] KIM H, MARWAH M, ARLITT M, et al.Unsupervised disaggregation of low frequency power measurements[C]//Proceedings of the 2011 SIAM International Conference on Data Mining, 2011:747-758. [11] PARSON O, GHOSH S, WEAL M, et al.An unsupervised training method for non-intrusive appliance load monitoring[J].Artificial Intelligence, 2014, 217:1-19. [12] KOLTER J Z, JAAKKOLA T.Approximate inference in additive factorial hmms with application to energy disaggregation[C]//Artificial Intelligence and Statistics, 2012:1472-1482. [13] KELLY J, KNOTTENBELT W.Neural NILM:Deep neural networks applied to energy disaggregation[C]//Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments.New York:ACM, 2015:55-64. [14] SIROJAN T, PHUNG B T, AMBIKAIRAJAH E.Deep neural network based energy disaggregation[C]//2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE).Piscataway:IEEE Press, 2018:73-77. [15] GAO Y, SCHAY A, HOU D Q, et al.Home appliance energy disaggregation using low frequency data and machine learning classifiers[C]//201716th IEEE International Conference on Machine Learning and Applications (ICMLA).Piscataway:IEEE Press, 2017:76-83. [16] BATRA N, SINGH A, WHITEHOUSE K.Gemello:Creating a detailed energy breakdown from just the monthly electricity bill[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM, 2016:431-440. [17] 李培强, 李欣然, 陈辉华, 等.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报, 2005, 25(24):73-78.LI P Q, LI X R, CHEN H H, et al.The characteristics classification and synthesis of power load based on fuzzy clustering[J].Proceedings of the CSEE, 2005, 25(24):73-78(in Chinese). [18] 王璨, 冯勤超.基于价值评价的电力用户分类研究[J].价值工程, 2009, 28(5):64-67.WANG C, FENG Q C.The research of power customers classification based on value assessment[J].Value Engineering, 2009, 28(5):64-67(in Chinese). [19] 李欣然, 姜学皎, 钱军, 等.基于用户日负荷曲线的用电行业分类与综合方法[J].电力系统自动化, 2010, 34(10):56-61.LI X R, JIANG X J, QIAN J, et al.A classifying and synthesizing method of power consumer industry based on the daily load profile[J].Automation of Electric Power Systems, 2010, 34(10):56-61(in Chinese). [20] ZHONG C L, SHAO J, ZHENG F, et al.Research on electricity consumption behavior of electric power users based on tag technology and clustering algorithm[C]//20185th International Conference on Information Science and Control Engineering (ICISCE).Piscataway:IEEE Press, 2018:459-462. [21] NORDAHL C, BOEVA V, GRAHN H, et al.Profiling of household residents' electricity consumption behavior using clustering analysis[C]//International Conference on Computational Science.Berlin:Springer, 2019:779-786. [22] LEE D D, SEUNG H S.Learning the parts of objects by non-negative matrix factorization[J].Nature, 1999, 401(6755):788-791. [23] OLSHAUSEN B A, FIELD D J.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature, 1996, 381(6583):607-609. [24] RAHIMPOUR A, QI H R, FUGATE D, et al.Non-intrusive energy disaggregation using non-negative matrix factorization with sum-to-k constraint[J].IEEE Transactions on Power Systems, 2017, 32(6):4430-4441. [25] TANG J, GAO H, HU X, et al.Exploiting homophily effect for trust prediction[C]//Proceedings of the 6th ACM Interhational Conference on Web Search and Data Mining.New York:ACM, 2013:53-62. |