留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变质心固定翼无人机动力学分析与抗扰控制

邱潇颀 高长生 荆武兴

邱潇颀, 高长生, 荆武兴等 . 变质心固定翼无人机动力学分析与抗扰控制[J]. 北京航空航天大学学报, 2022, 48(3): 430-437. doi: 10.13700/j.bh.1001-5965.2020.0573
引用本文: 邱潇颀, 高长生, 荆武兴等 . 变质心固定翼无人机动力学分析与抗扰控制[J]. 北京航空航天大学学报, 2022, 48(3): 430-437. doi: 10.13700/j.bh.1001-5965.2020.0573
QIU Xiaoqi, GAO Changsheng, JING Wuxinget al. Dynamic analysis and disturbance rejection control of mass-actuated fixed-wing UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 430-437. doi: 10.13700/j.bh.1001-5965.2020.0573(in Chinese)
Citation: QIU Xiaoqi, GAO Changsheng, JING Wuxinget al. Dynamic analysis and disturbance rejection control of mass-actuated fixed-wing UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 430-437. doi: 10.13700/j.bh.1001-5965.2020.0573(in Chinese)

变质心固定翼无人机动力学分析与抗扰控制

doi: 10.13700/j.bh.1001-5965.2020.0573
基金项目: 

国家自然科学基金 11572097

详细信息
    通讯作者:

    高长生, E-mail: gaocs@hit.edu.cn

  • 中图分类号: V249.1

Dynamic analysis and disturbance rejection control of mass-actuated fixed-wing UAV

Funds: 

National Natural Science Foundation of China 11572097

More Information
  • 摘要:

    变质心无人机具有气动效率更高、隐身性能更好、机翼结构更加简单等优点。提出了时滞更小、结构更加简单的单滑块变质心无人机布局方案,分析了滑块参数对变质心无人机动力学特性的影响,在此基础上给出了滑块的理想安装位置,并研究了变质心无人机布局方案控制效率随速度的变化情况。针对变质心无人机强耦合、强非线性的特点,基于粒子群算法(PSO)设计了自抗扰控制器(ADRC),其中扩张状态观测器估计出包含耦合和参数摄动的总和扰动项,并基于此进行动态补偿。仿真结果验证了所设计控制器的有效性和鲁棒性。

     

  • 图 1  变质心固定翼无人机简图

    Figure 1.  Sketch of mass-actuated fixed-wing UAV

    图 2  文献[25]中的双滑块方案

    Figure 2.  Dual-slider scheme in Ref.[25]

    图 3  纵向动态特性区域分布

    Figure 3.  Area distribution of longitudinal dynamic characteristics

    图 4  效率系数随速度变化曲线

    Figure 4.  Efficiency coefficient versus airspeed

    图 5  控制器结构

    Figure 5.  Structure of controller

    图 6  姿态角跟踪结果

    Figure 6.  Tracking results of attitude angles

    图 7  控制信号曲线

    Figure 7.  Control signal curves

    图 8  扩张状态观测器估计误差

    Figure 8.  Estimation error of ESO

    图 9  工况3下的扩张状态观测器性能

    Figure 9.  Performance of ESO under Condition 3

    表  1  纵向运动特征根

    Table  1.   Eigenvalues of longitudinal motion

    z1b/m 特征根
    长周期运动 短周期运动
    -0.2 0.689 3, -0.499 1 -2.783 0±5.747 4j
    0 -0.285 0±0.165 4j -2.492 3±6.850 7j
    0.2 -0.594 6±0.348 6j -2.093 8±6.745 6j
    下载: 导出CSV

    表  2  横向运动特征根

    Table  2.   Eigenvalues of lateral motion

    z1b/m 特征根
    滚转模态 荷兰滚模态 螺旋模态
    -0.2 -12.270 7 -5.850 1±10.179 4j 0.401 0
    0 -13.545 1 -5.825 1±10.133 8j -0.129 4
    0.2 -11.336 6 -5.897 3±10.038 7j -0.714 3
    下载: 导出CSV

    表  3  无人机参数

    Table  3.   Parameters of UAV

    参数 数值
    mS/kg 20
    Sref/m2 0.55
    b/m 2.895 6
    c/m 0.189 9
    Jx, Jy, Jz/(kg·m2) 1.135, 0.824, 1.759
    Sprop/m2 0.202 7
    kmotor 80
    Cprop 1.0
    下载: 导出CSV
  • [1] ERTURK S A, DASKIRAN O, DOGAN A. Trim analysis of a moving-mass actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2012.
    [2] EL-GOHARY A I, TAWFIK T S. Optimal control of the rotational motion of a rigid body using moving masses[J]. Applied Mathematics and Computation, 2004, 153(2): 453-465. doi: 10.1016/S0096-3003(03)00645-3
    [3] HE L, CHEN X, KUMAR K D, et al. A novel three-axis attitude stabilization method using in-plane internal mass-shifting[J]. Aerospace Science and Technology, 2019, 92: 489-500. doi: 10.1016/j.ast.2019.06.019
    [4] HUANG H, ZHOU J. Solar sailing CubeSat attitude control method with satellite as moving mass[J]. Acta Astronautica, 2019, 159: 331-341. doi: 10.1016/j.actaastro.2019.03.077
    [5] JUNG W, MAZZOLENI A P, CHUNG J. Dynamic analysis of a tethered satellite system with a moving mass[J]. Nonlinear Dynamics, 2014, 75(1-2): 267-281. doi: 10.1007/s11071-013-1064-8
    [6] WOOLSEY C A, LEONARD N E. Stabilizing underwater vehicle motion using internal rotors[J]. Automatica, 2002, 38(12): 2053-2062. doi: 10.1016/S0005-1098(02)00136-X
    [7] LI B, SU T C. Heading autopilot of autonomous underwater vehicles with internal moving mass[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(2): 021003. doi: 10.1115/1.4034727
    [8] LI Q, XIE S, LUO J, et al. Pitch reduction system design and control for an underwater vehicle[C]//IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2014: 14547083.
    [9] WOOLSEY C A, LEONARD N E. Moving mass control for underwater vehicles[C]//Proceedings of the 2002 American Control Conference. Piscataway: IEEE Press, 2002: 7426172.
    [10] LI J, GAO C, FENG T, et al. Novel moving mass flight vehicle and its equivalent experiment[J]. Journal of Dynamic Systems Measurement and Control, 2018, 140(11): 111010. doi: 10.1115/1.4040326
    [11] LI J, GAO C, JING W, et al. Dynamic analysis and control of novel moving mass flight vehicle[J]. Acta Astronautica, 2017, 131: 36-44. doi: 10.1016/j.actaastro.2016.11.023
    [12] PETSOPOULOS T, REGAN F, BARLOW J. A moving-mass roll control system for a fixed-trim re-entry vehicle[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1994.
    [13] ROBINETT R D, STURGIS B R, KERR S A. Moving mass trim control for aerospace vehicles[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(5): 1064-1070. doi: 10.2514/3.21746
    [14] ROGERS J, COSTELLO M. Control authority of a projectile equipped with a controllable internal translating mass[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1323-1333. doi: 10.2514/1.33961
    [15] CALHOUN P, QUEEN E. Entry vehicle control system design for the mars smart lander[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2002.
    [16] 陈丽, 周革, 段登平. 平流层飞艇变质心姿态运动仿真[J]. 系统仿真学报, 2012, 24(12): 2434-2438. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201212006.htm

    CHEN L, ZHOU G, DUAN D P. Simulation of moving-mass control of stratospheric airship[J]. Journal of System Simulation, 2012, 24(12): 2434-2438(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201212006.htm
    [17] HAUS T, ORSAG M, BOGDAN S, et al. Design considerations for a large quadrotor with moving mass control[C]//2016 International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2016: 16123851.
    [18] HAUS T, PRKUT N, BOROVINA K, et al. A novel concept of attitude control for large multirotor-UAVs based on moving mass control[C]//2016 24th Mediterranean Conference on Control and Automation. Piscataway: IEEE Press, 2016: 16212617.
    [19] DOGAN A, ERTURK S A. Trimming mass-actuated airplane in turns with zero side slip angle[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2014.
    [20] ERTURK S A, DOGAN A. Trim analysis of a moving-mass actuated airplane in steady turn[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
    [21] ERTURK S A, DOGAN A. Trim analyses of mass-actuated airplane in cruise and steady-state turn[J]. Journal of Aircraft, 2017, 54(4): 1587-1594. doi: 10.2514/1.C034200
    [22] ERTURK S A, DOGAN A. Trim analyses of mass-actuated airplane in steady-state climb and descent[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2017.
    [23] ERTURK S A, DOGAN A. Propeller torque effect on cruise trim of standard and mass-actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015.
    [24] ERTURK S A, DOGAN A. Propeller torque effect on steady-state turn trim of standard and mass-actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016.
    [25] VENGATE S R, ERTURK S A, DOGAN A. Development and flight test of moving-mass actuated unmanned aerial vehicle[C]// AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016.
    [26] ERTURK S A, DOGAN A. Dynamic simulation and control of mass-actuated airplane[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(8): 1939-1953. doi: 10.2514/1.G002658
    [27] BEARD R W, MCLAIN T W. Small unmanned aircraft: Theory and practice[M]. Princeton: Princeton University Press, 2012.
    [28] 韩京清. 从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002, 9(3): 13-18. doi: 10.3969/j.issn.1671-7848.2002.03.003

    HAN J Q. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18(in Chinese). doi: 10.3969/j.issn.1671-7848.2002.03.003
    [29] VAN DEN BERGH F, ENGELBRECHT A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8): 937-971. doi: 10.1016/j.ins.2005.02.003
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  170
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 录用日期:  2020-12-21
  • 网络出版日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答