[1] 李京安.超声相控阵扇形扫描检测成像技术研究[D].哈尔滨:哈尔滨工业大学,2009.LI J A.Research on phased array ultrasonic sector-scan inspection imaging technology[D].Harbin:Harbin Institute of Technology,2009(in Chinese). [2] 陈彦华,李明轩.人工神经网络在超声无损检测中的应用[J].应用声学,1996,15(3):40-44.CHEN Y H,LI M X.Application of artificial neural network to ultrasonic nondestructive testing[J].Applied Acoustics,1996,15(3):40-44(in Chinese). [3] 刘镇清.人工神经网络BP算法的改进及其在无损检测中的应用[J].测控技术,2001,20(3):56-58.LIU Z Q.Improvement of BP training algorithm for artificial neural network and its application in NDT[J].Measurement & Control Technology,2001,20(3):56-58(in Chinese). [4] 陈国华,张新梅,谢常欢,等.超声检测中裂纹型缺陷深度的智能识别[J].华南理工大学学报(自然科学版),2005,33(8):1-5.CHEN G H,ZHANG X M,XIE C H,et al.Intelligent recognition of crack depth in ultrasonic testing[J].Journal of South China University of Technology (Natural Science),2005,33(8):1-5(in Chinese). [5] 黄民,李功.焊缝超声无损检测中的缺陷智能识别方法[J].北京信息科技大学学报,2009,24(2):33-36.HUANG M,LI G.Intelligent defect recognition methods in the ultrasonic non-destructive test of welds[J].Journal of Beijing Information Science and Technology University,2009,24(2):33-36(in Chinese). [6] 施成龙,师芳芳,张碧星.利用深度神经网络和小波包变换进行缺陷类型分析[J].声学学报,2016,41(4):499-506.SHI C L,SHI F F,ZHANG B X.Analysis on defect classification by deep neural networks and wavelet packet transform[J].Acta Acustica,2016,41(4):499-506(in Chinese). [7] MENG M,CHUA Y J,WOUTERSON E,et al.Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks[J].Neurocomputing,2017,257:128-135. [8] 黄焕东,胡利晨,李斌彬,等.基于区域的快速卷积神经网络的焊缝TOFD检测缺陷识别[J].无损检测,2019,41(7):12-18.HUANG H D,HU L C,LI B B,et al.Recognition of defect in TOFD image based on faster region convolutional neural networks[J].Nondestructive Testing Technologying,2019,41(7):12-18(in Chinese). [9] 刘志浩.对接焊缝的超声相控阵检测及三维成像分析[D].南昌:南昌航空大学,2016.LIU Z H.Butt welding inspection and defects three-dimensional imaging using ultrasonic phased array technology[D].Nanchang:Nanchang Hangkong University,2016(in Chinese). [10] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(6):1137-1149. [11] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).Piscataway:IEEE Press,2015:1440-1448. [12] BEWLEY A,GE Z Y,OTT L,et al.Simple online and realtime tracking[C]//2016 IEEE International Conference on Image Processing (ICIP).Piscataway:IEEE Press,2016:3464-3468. [13] 包俊,董亚超,刘宏哲.基于Deep-Sort的目标跟踪算法综述[C]//中国计算机用户协会网络应用分会2019年第二十三届网络新技术与应用年会,2019:13-17.BAO J,DONG Y C,LIU H Z.Survey of object tracking algorithms based on Deep-Sort[C]//China Computer Users Association,Proceedings of the 23rd Annual Conference on New Network Technologies and Applications,2019:13-17(in Chinese). [14] 闫庆森,李临生,徐晓峰,等.视频跟踪算法研究综述[J].计算机科学,2013,40(S1):204-209.YAN Q S,LI L S,XU X F,et al.Survey of visual tracking algorithm[J].Computer Science,2013,40(S1):204-209(in Chinese). [15] 尹宏鹏,陈波,柴毅,等.基于视觉的目标检测与跟踪综述[J].自动化学报,2016,42(10):1466-1489.YIN H P,CHEN B,CHAI Y,et al.Vision-based object detection and tracking:A review[J].Acta Automatica Sinica,2016,42(10):1466-1489(in Chinese). [16] 彭丁聪.卡尔曼滤波的基本原理及应用[J].软件导刊,2009,8(11):32-34.PENG D C.Basic principle and application of Kalman filter[J].Software Guide,2009,8(11):32-34(in Chinese). [17] 王学斌,徐建宏,张章.卡尔曼滤波器参数分析与应用方法研究[J].计算机应用与软件,2012,29(6):212-215.WANG X B,XU J H,ZHANG Z.On analysis and application approach for Kalman filter parameters[J].Computer Applications and Software,2012,29(6):212-215(in Chinese). [18] 叶斌,徐毓.强跟踪滤波器与卡尔曼滤波器对目标跟踪的比较[J].空军雷达学院学报,2002,16(2):17-19.YE B,XU Y.Comparison between a strong tracking filter and Kalman filter for target tracking[J].Journal of Air Force Radar Academy,2002,16(2):17-19(in Chinese). [19] 周鑫,何晓新,郑昌文.基于图像深度学习的无线电信号识别[J].通信学报,2019,40(7):114-125.ZHOU X,HE X X,ZHENG C W.Radio signal recognition based on image deep learning[J].Journal on Communications,2019,40(7):114-125(in Chinese). |