留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基座姿态可控空间机器人的通用避奇异算法

赵龙泽 佘浩平 黄良伟 黄龙飞

赵龙泽, 佘浩平, 黄良伟, 等 . 一种基座姿态可控空间机器人的通用避奇异算法[J]. 北京航空航天大学学报, 2022, 48(3): 495-503. doi: 10.13700/j.bh.1001-5965.2020.0603
引用本文: 赵龙泽, 佘浩平, 黄良伟, 等 . 一种基座姿态可控空间机器人的通用避奇异算法[J]. 北京航空航天大学学报, 2022, 48(3): 495-503. doi: 10.13700/j.bh.1001-5965.2020.0603
ZHAO Longze, SHE Haoping, HUANG Liangwei, et al. A general singularity avoidance algorithm for pedestal-controllable space manipulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 495-503. doi: 10.13700/j.bh.1001-5965.2020.0603(in Chinese)
Citation: ZHAO Longze, SHE Haoping, HUANG Liangwei, et al. A general singularity avoidance algorithm for pedestal-controllable space manipulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 495-503. doi: 10.13700/j.bh.1001-5965.2020.0603(in Chinese)

一种基座姿态可控空间机器人的通用避奇异算法

doi: 10.13700/j.bh.1001-5965.2020.0603
基金项目: 

北京市科技计划项目 Z181100003018001

详细信息
    通讯作者:

    佘浩平, E-mail: shehp@bit.edu.cn

  • 中图分类号: TP241

A general singularity avoidance algorithm for pedestal-controllable space manipulator

Funds: 

Science and Technology Program of Beijing (Project) Z181100003018001

More Information
  • 摘要:

    针对基座姿态可控空间机器人笛卡儿路径规划中的奇异问题,提出了一种通用的运动学奇异回避算法。通过虚拟机械臂的方法建立空间机械臂的雅可比矩阵,实时判断雅可比矩阵行列式的值与角速度的关系确定奇异区,采用Newton-Raphson迭代法进行逆运动学求解,并设计了一种“微分项提取+二次拟合”的分段路径规划算法应用于奇异回避,直至关节角脱离奇异区。仿真结果表明:所提算法能够有效回避奇异,适应各种自由度与构型机械臂,调节计算时间与跟踪精度之间的关系,具备较好的通用性。

     

  • 图 1  空间机械臂的一般模型

    Figure 1.  General model of a space manipulator

    图 2  机械臂逆运动学的数值解法算法流程

    Figure 2.  Flowchart of inverse kinematics numerical solution algorithm of manipulator

    图 3  空间机械臂奇异回避算法流程

    Figure 3.  Flow-chart of singularity avoidance algorithm for space manipulator

    图 4  6R机械臂的结构简图

    Figure 4.  Structure of 6R manipulator

    图 5  未进行奇异回避时机械臂各关节角速度

    Figure 5.  Angular velocity of each joint of manipulator without singularity avoidance

    图 6  进行奇异回避后的机械臂各关节角速度

    Figure 6.  Angular velocity of each joint of manipulator after singularity avoidance

    图 7  k取不同值时末端位置误差对比

    Figure 7.  Comparison of terminal position errors when k is taken as different values

    图 8  k取不同值时末端姿态误差对比

    Figure 8.  Comparison of terminal attitude errors when k is taken as different values

    表  1  6R机械臂的DH参数

    Table  1.   DH parameters of 6R manipulator

    连杆i θi/(°) αi/(°)
    1 90 -90 0 0
    2 -180 0 799.5 0
    3 -90 90 29.2 -141.3
    4 0 -90 0 -688.5
    5 180 90 0 0
    6 0 0 0 333.4
    下载: 导出CSV
  • [1] UMETANI Y, YOSHIDA K. Resolved motion rate control of space manipulators with generalized Jacobian matrix[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3): 303-314. doi: 10.1109/70.34766
    [2] KLEIN C A, HUANG C H. Review of pseudoinverse control for use with kinematically redundant manipulators[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, SMC-13(2): 245-250. doi: 10.1109/TSMC.1983.6313123
    [3] NAKAMURA Y, HANAFUSA H. Inverse kinematics solutions with singularity robustness for robot manipulator control[J]. Journal of Dynamic Systems, Measurement, and Control, 1986, 108(3): 163-171. doi: 10.1115/1.3143764
    [4] WAMPLER C W. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1986, 16(1): 93-101. doi: 10.1109/TSMC.1986.289285
    [5] CHIAVERINI S. Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1997, 13(3): 398-410. doi: 10.1109/70.585902
    [6] 杨震, 杨文玉, 张晓平. 机器人逆运动学的奇异鲁棒性算法[J]. 中国机械工程, 2014, 25(8): 995-1000. doi: 10.3969/j.issn.1004-132X.2014.08.001

    YANG Z, YANG W Y, ZHANG X P. Singularity robustness algorithm for inverse kinematics of robots[J]. China Mechanical Engineering, 2014, 25(8): 995-1000(in Chinese). doi: 10.3969/j.issn.1004-132X.2014.08.001
    [7] 董伯麟, 彭航. 工业机器人逆运动学的奇异回避算法[J]. 机械设计与研究, 2016, 32(2): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201602015.htm

    DONG B L, PENG H. Singularity avoidance algorithm for inverse kinematics of industrial robots[J]. Mechanical Design & Research, 2016, 32(2): 35-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201602015.htm
    [8] CHENG F T, HOUR T L, SUN Y Y, et al. Study and resolution of singularities for a 6-DOF PUMA manipulator[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1997, 27(2): 332-343. doi: 10.1109/3477.558842
    [9] 徐文福, 梁斌, 刘宇, 等. 一种新的PUMA类型机器人奇异回避算法[J]. 自动化学报, 2008, 34(6): 670-675. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200806011.htm

    XU W F, LIANG B, LIU Y, et al. A novel approach to avoid singularities of PUMA-type manipulators[J]. Acta Automatica Sinica, 2008, 34(6): 670-675(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200806011.htm
    [10] 崔洪新, 李焕良, 韩金华, 等. 一种六自由度机械手奇异回避算法[J]. 中国机械工程, 2017, 28(11): 1312-1318. doi: 10.3969/j.issn.1004-132X.2017.11.010

    CUI H X, LI H L, HAN J H, et al. A novel avoid singularity algorithm for 6-DOF manipulators[J]. China Mechanical Engineering, 2017, 28(11): 1312-1318(in Chinese). doi: 10.3969/j.issn.1004-132X.2017.11.010
    [11] 刘成良, 张凯, 曹其新, 等. 机器人奇异形位分析及协调控制方法[J]. 上海交通大学学报, 2002, 36(8): 1138-1142. doi: 10.3321/j.issn:1006-2467.2002.08.019

    LIU C L, ZHANG K, CAO Q X, et al. Singular configuration analysis and coordinate control of robot[J]. Journal of Shanghai Jiao Tong University, 2002, 36(8): 1138-1142(in Chinese). doi: 10.3321/j.issn:1006-2467.2002.08.019
    [12] CHOI H B, LEE S, LEE J. Minimum infinity-norm joint velocity solutions for singularity-robust inverse kinematics[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(3): 469-474. doi: 10.1007/s12541-011-0060-5
    [13] 吴戈, 张国良, 羊帆, 等. 一种改进阻尼倒数的空间机器人避奇异算法[J]. 宇航学报, 2016, 37(3): 325-333. doi: 10.3873/j.issn.1000-1328.2016.03.011

    WU G, ZHANG G L, YANG F, et al. A singularity avoidance algorithm based on improved damped reciprocal for space robot[J]. Journal of Astronautics, 2016, 37(3): 325-333(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.03.011
    [14] QIU C W, CAO Q X, MIAO S H. An on-line task modification method for singularity avoidance of robot manipulators[J]. Robotica, 2009, 27(4): 539-546. doi: 10.1017/S026357470800492X
    [15] NANOS K, PAPADOPOULOS E. On cartesian motions with singularities avoidance for free-floating space robots[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2012: 5398-5403.
    [16] NANOS K, PAPADOPOULOS E. Avoiding dynamic singularities in Cartesian motions of free-floating manipulators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2305-2318. doi: 10.1109/TAES.2015.140343
    [17] PAPADOPOULOS E, DUBOWSKY S. On the nature of control algorithms for free-floating space manipulators[J]. IEEE Transactions on Robotics and Automation, 1991, 7(6): 750-758. doi: 10.1109/70.105384
    [18] VAFA Z, DUBOWSKY S. The kinematics and dynamics of space manipulators: The virtual manipulator approach[J]. The International Journal of Robotics Research, 1990, 9(4): 3-21. doi: 10.1177/027836499000900401
    [19] 梁斌, 徐文福. 空间机器人: 建模、规划与控制[M]. 北京: 清华大学出版社, 2017: 81-84, 121-123.

    LIANG B, XU W F. Space robot: Modeling, planning and control[M]. Beijing: Tsinghua University Press, 2017: 81-84, 121-123(in Chinese).
    [20] GOLUB G H, REINSCH C. Singular value decomposition and least squares[M]//WILKINSON J H, REINSCH C. Linear algebra. Berlin: Springer, 1971: 134-151.
    [21] BOYD J P. Trouble with gegenbauer reconstruction for defeating Gibbs' phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations[J]. Journal of Computational Physics, 2005, 204(1): 253-264. doi: 10.1016/j.jcp.2004.10.008
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  27
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 录用日期:  2020-12-21
  • 网络出版日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答