[1] ZHENG L,YANG Y,HAUPTMANN A G.Person re-identification:Past,present and future[EB/OL].(2016-10-11)[2020-10-30].http://arxiv.org/abs/1610.02984. [2] 罗浩, 姜伟,范星,等.基于深度学习的行人重识别研究进展[J].自动化学报,2019,45(11):2032-2049.LUO H,JIANG W,FAN X,et al.A survey on deep learning based person re-identification[J].Acta Automatica Sinica,2019,45(11):2032-2049(in Chinese). [3] YE M,SHEN J,LIN G,et al.Deep learning for person re-identification:A survey and outlook.(2020-01-13)[2020-10-30].https://arxiv.org/abs/2001.04193v1. [4] LI S,XIAO T,LI H,et al.Person search with natural language description[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2017:1970-1979. [5] JI G,LI S J,PANG Y.Fusion-attention network for person search with free-form natural language[J].Pattern Recognition Letters,2018,116:205-211. [6] CHEN T,XU C,LUO J.Improving text-based person search by spatial matching and adaptive threshold[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision.Piscataway:IEEE Press,2018:1879-1887. [7] CHEN D,LI H,LIU X,et al.Improving deep visual representation for person re-identification by global and local image-language association[C]//Proceedings of the European Conference on Computer Vision.Berlin:Springer,2018:56-73. [8] WANG Y,BO C,WANG D,et al.Language person search with mutually connected classification loss[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway:IEEE Press,2019:2057-2061. [9] ZHANG Y,LU H.Deep cross-modal projection learning for image-text matching[C]//Proceedings of the European Conference on Computer Vision.Berlin:Springer,2018:707-723. [10] AGGARWAL S,BABU R V,CHAKRABORTY A.Text-based person search via attribute-aided matching[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision.Piscataway:IEEE Press,2020:2617-2625. [11] LI D,CHEN X,HUANG K Q.Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios[C]//Proceedings of the Asian Conference on Pattern Recognition.Piscataway:IEEE Press,2015:111-115. [12] DENG Y,LUO P,LOY C C,et al.Pedestrian attribute recognition at far distance[C]//Proceedings of the ACM International Conference on Multimedia.New York:ACM,2014:789-792. [13] WANG J, ZHU X, GONG S, et al.Attribute recognition by joint recurrent learning of context and correlation[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE Press,2017:17467750. [14] LIN Y,ZHENG L,ZHENG Z,et al.Improving person re-identification by attribute and identity learning[J].Pattern Recognition,2019,95:151-161. [15] MATSUKAWA T,SUZUKI E.Person re-identification using CNN features learned from combination of attributes[C]//Proceedings of the IEEE International Conference on Pattern Recognition.Piscataway:IEEE Press,2016:2428-2433. [16] CHEN W,CHEN X,ZHANG J,et al.Beyond triplet loss:A deep quadruplet network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2017:17355323. [17] ALEXANDER H,LUCAS B,BASTIAN L.In defense of the triplet loss for person reidentification[EB/OL].(2017-03-22)[2020-10-30].https://arxiv.org/abs/1703.07737. [18] YIN J,WU A,ZHENG W.Fine-grained person re-identification[J].International Journal of Computer Vision,2020,128:1654-1672. [19] GAO Z,GAO L S,ZHANG H,et al.Deep spatial pyramid feature collaborative reconstruction for partial person reid[C]//Proceedings of the ACM International Conference on Multimedia.New York:ACM,2019:1879-1887. [20] ZHENG Z,YANG X,YU Z,et al.Joint discriminative and generative learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2019:1335-1344. [21] YANG Q,WU A,ZHENG W,et al.Person re-identification by contour sketch under moderate clothing change[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(6):2029-2046. [22] WANG B,YANG Y,XU X,et al.Adversarial cross-modal retrieval[C]//Proceedings of the ACM International Conference on Multimedia.New York:ACM,2017:154-162. [23] JING Y,SI C,WANG J,et al.Pose-guided joint global and attentive local matching network for text-based person search[EB/OL].(2018-09-22)[2020-10-30].https://arxiv.org/abs/1809.08440v2. [24] LOPER E,KLEIN E,BIRD S.Natural language processing with python-natural language toolkit[CP/OL].(2019-09-04)[2020-10-30].http://www.nltk.org/book/. [25] LIU X,ZHAO H,TIAN M,et al.HydraPlus-Net:Attentive deep features for pedestrian analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2017:350-359. [26] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2016:770-778. [27] LUO Y,ZHENG Z,ZHENG L,et al.Macro-micro adversarial network for human parsing[C]//Proceedings of the European Conference on Computer Vision.Berlin:Springer,2018:424-440. [28] SUN B,SAENKO K.Deep coral:Correlation alignment for deep domain adaptation[C]//Proceedings of the European Conference on Computer Vision.Berlin,German:Springer,2016:443-450. [29] SHI B,JI L,LU P,et al.Knowledge aware semantic concept expansion for image-text matching[C]//Proceedings of the International Joint Conference on Artificial Intelligence.San Francisco:Margan Kaufmann,2019:5182-5189. [30] HUANG Y,WU Q,SONG C,et al.Learning semantic concepts and order for image and sentence matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2018:6163-6171. [31] KINGMA D P,BA J.Adam:A method for stochastic optimization[EB/OL].(2017-01-30)[2020-10-30].https://arxiv.org/abs/1412.6980. [32] LI S,XIAO T,LI H,et al.Identity-aware textual-visual matching with latent co-attention[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2017:1908-1917. [33] ZHENG Z,ZHENG L,GARRETT M,et al.Dual-path convolutional image-text embeddings with instance loss[J].ACM Transactions on Multimedia Computing,Communications,and Applications,2020,16(2):1-23. |