留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SINS/RFID的隧道列车高精度定位方法

张辰东 王兆瑞 金声震 艾国祥

张辰东, 王兆瑞, 金声震, 等 . 基于SINS/RFID的隧道列车高精度定位方法[J]. 北京航空航天大学学报, 2022, 48(4): 632-638. doi: 10.13700/j.bh.1001-5965.2020.0647
引用本文: 张辰东, 王兆瑞, 金声震, 等 . 基于SINS/RFID的隧道列车高精度定位方法[J]. 北京航空航天大学学报, 2022, 48(4): 632-638. doi: 10.13700/j.bh.1001-5965.2020.0647
ZHANG Chendong, WANG Zhaorui, JIN Shengzhen, et al. High-precision positioning method based on SINS/RFID for trains in tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 632-638. doi: 10.13700/j.bh.1001-5965.2020.0647(in Chinese)
Citation: ZHANG Chendong, WANG Zhaorui, JIN Shengzhen, et al. High-precision positioning method based on SINS/RFID for trains in tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 632-638. doi: 10.13700/j.bh.1001-5965.2020.0647(in Chinese)

基于SINS/RFID的隧道列车高精度定位方法

doi: 10.13700/j.bh.1001-5965.2020.0647
基金项目: 

国家重点研发计划 2016YFB0501900

国家自然科学基金 U1931125

国家自然科学基金 11603041

详细信息
    通讯作者:

    王兆瑞, E-mail: zhaorui_w@nao.cas.cn

  • 中图分类号: TN967.2

High-precision positioning method based on SINS/RFID for trains in tunnel

Funds: 

National Key R & D Program of China 2016YFB0501900

National Natural Science Foundation of China U1931125

National Natural Science Foundation of China 11603041

More Information
  • 摘要:

    为了获取高速铁路列车在隧道这种导航卫星不可见环境下的定位信息,提出一种基于捷联惯性导航系统(SINS)和射频识别技术(RFID)的组合定位方法。通过响应时间模型来计算标签的定位精度,依据实际轨道环境增加标签对列车姿态校准的能力,同时结合惯性导航系统解算得到连续的定位数据。仿真结果表明:在30 km长的隧道利用射频识别标签位置信息进行校准,可以很大程度地减小惯性导航系统的误差积累,提高定位精度。引入姿态信息后,可以在陀螺仪性能与标签间隔的多种组合中保持隧道全线定位精度在米级,最高能够达到0.5 m。

     

  • 图 1  RFID标签精度分析

    Figure 1.  Precision analysis of RFID tag

    图 2  SINS/RFID组合导航系统结构

    Figure 2.  Structure of SINS/RFID integrated navigation system

    图 3  列车隧道轨迹曲线仿真

    Figure 3.  Curve of train trajectory simulation in tunnel

    图 4  RFID位置校准SINS的定位误差

    Figure 4.  Positioning error of SINS calibrated by position of RFID

    图 5  RFID姿态位置信息校准SINS的定位误差

    Figure 5.  Positioning error of SINS calibrated by position and attitude of RFID

    表  1  RFID阅读器读取位置分布统计

    Table  1.   Distribution statistics of received signal position of RFID reader

    响应时间分布 均值/m 标准差/m
    正态分布 1.921 9 0.337 3
    均匀分布 1.908 7 0.358 9
    下载: 导出CSV

    表  2  列车仿真轨迹的行进方案

    Table  2.   Scheme of train trajectory simulation

    序号 路线方案 时间/s 重复次数
    1 直行 50 1
    2 左转,直行 5,5 7
    3 左转,直行 45,5 1
    4 右转,直行 5,5 1
    5 左转,直行 5,5 2
    6 右转,直行 5,5 5
    7 左转,直行 5,5 1
    8 右转,直行 5,5 4
    下载: 导出CSV

    表  3  SINS/RFID位置组合导航定位误差统计

    Table  3.   Navigation positioning error statistics of SINS/RFID integrated by positon

    间隔/m 情况1 情况2 情况3
    平均值/m 最大值/m 平均值/m 最大值/m 平均值/m 最大值/m
    100 0.752 8 1.153 3 3.104 4 5.682 5 27.824 4 51.267 9
    200 1.374 4 1.993 8 6.150 7 11.315 7 56.235 7 107.712 2
    500 3.187 6 4.505 5 15.423 3 27.781 1 141.115 7 254.971 2
    1 000 6.202 6 9.020 6 30.243 2 52.392 2 276.417 9 538.789 2
    不用RFID 93.333 2 122.828 6 338.633 0 653.079 8 3 072.103 3 6 425.889 1
    下载: 导出CSV

    表  4  SINS/RFID位置姿态角组合导航定位误差统计

    Table  4.   Navigation positioning error statistics of SINS/RFID integrated by positon and attitude

    间隔/m 情况1 情况2 情况3
    平均值/m 最大值/m 平均值/m 最大值/m 平均值/m 最大值/m
    100 0.510 4 0.743 4 0.573 8 0.851 9 0.625 2 1.002 6
    200 0.845 7 1.413 4 0.968 0 1.427 1 1.183 1 1.987 6
    500 1.812 3 2.936 7 2.158 1 3.580 0 3.789 5 6.411 3
    1 000 3.497 4 6.041 7 4.507 6 9.521 8 11.982 4 24.171 1
    下载: 导出CSV
  • [1] 上官伟, 王韦舒, 张路, 等. 北斗导航RAIM技术在列车定位的应用研究[J]. 铁道学报, 2018, 40(2): 73-81. doi: 10.3969/j.issn.1001-8360.2018.02.011

    SHANGGUAN W, WANG W S, ZHANG L, et al. Application of BDS-based RAIM technology in train positioning[J]. Journal of the China Railway Society, 2018, 40(2): 73-81(in Chinese). doi: 10.3969/j.issn.1001-8360.2018.02.011
    [2] WANG D S, LU Y J, ZHANG L, et al. Intelligent positioning for a commercial mobile platform in seamless indoor/outdoor scenes based on multi-sensor fusion[J]. Sensors, 2019, 19(7): 1696. doi: 10.3390/s19071696
    [3] 王晓薇. 基于WIFI的隧道人员定位算法的分析与研究[D]. 武汉: 武汉邮电科学研究院, 2017: 18-24.

    WANG X W. Analysis and research of tunnel personnel location algorithm based on WIFI[D]. Wuhan: Wuhan Research Institute of Posts and Telecommunications, 2017: 18-24(in Chinese).
    [4] 黄文轩. 在GPS不完备条件下RFID列车定位研究[J]. 铁路通信信号工程技术, 2018, 15(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TLTX201801010.htm

    HUANG W X. Research on RFID train location under incomplete GPS[J]. Railway Signalling & Communication Engineering, 2018, 15(1): 25-29(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TLTX201801010.htm
    [5] 陈伟. 卫星遮挡交通环境下车辆融合定位策略研究[D]. 南京: 东南大学, 2017: 81-97.

    CHEN W. Research on fusion positioning strategy for land vehicles in satellite signal-blocked traffic environments[D]. Nanjing: Southeast University, 2017: 81-97(in Chinese).
    [6] PEREIRA F L. Positioning systems for underground tunnel environments[D]. Portugal: Faculdade de Engenharia da Universidade do Porto, 2016: 79-115.
    [7] 方旺盛, 高银. 狭长直隧道环境中WSN的RSSI加权质心定位算法[J]. 传感技术学报, 2014, 27(2): 247-251. doi: 10.3969/j.issn.1004-1699.2014.02.019

    FANG W S, GAO Y. A weighted centroid localization algorithm based on RSSI for wireless sensor network in straight narrow tunnel[J]. Chinese Journal of Sensors and Actuators, 2014, 27(2): 247-251(in Chinese). doi: 10.3969/j.issn.1004-1699.2014.02.019
    [8] SONG X, LI X, TANG W C, et al. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors[J]. Sensors, 2014, 14(12): 23095-23118. doi: 10.3390/s141223095
    [9] KO H, SHIM Y, KONG S H. Realization and demonstration of enhanced Korean high-speed train navigation system with noise filtering schemes[J]. International Journal of Control Automation and Systems, 2018, 16(9): 769-781.
    [10] CUI L, ZHANG Z H, GAO N, et al. Radio frequency identification and sensing techniques and their applications-A review of the state-of-the-art[J]. Sensors, 2019, 19(18): 4012. doi: 10.3390/s19184012
    [11] 彭国旗. 基于RFID的车辆定位技术研究[D]. 长春: 长春理工大学, 2018: 7-18.

    PENG G Q. Research on vehicle positioning technology based on RFID[D]. Changchun: Changchun University of Science and Technology, 2018: 7-18(in Chinese).
    [12] ZHAO Y, LIU K H, MA Y T, et al. Similarity analysis based indoor localization algorithm with backscatter information of passive UHF RFID tags[J]. IEEE Sensors Journal, 2017, 17(1): 185-193. doi: 10.1109/JSEN.2016.2624314
    [13] MATBOULY H, ZANNAS K, DUROC Y, et al. Analysis and assessments of time delay constrains for passive RFID tag-sensor communication link: Application for rotation speed sensing[J]. IEEE Sensors Journal, 2017, 17(7): 2174-2181. doi: 10.1109/JSEN.2017.2662058
    [14] 严恭敏, 邓瑀. 传统组合导航中的实用Kalman滤波技术评述[J]. 导航定位与授时, 2020, 7(2): 50-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202002009.htm

    YAN G M, DENG Y. Review on practical Kalman filtering techniques in traditional integrated navigation system[J]. Navigation Positioning & Timing, 2020, 7(2): 50-64(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS202002009.htm
    [15] 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019: 78-105.

    YAN G M, WENG J. Strapdown inertial navigation algorithm and principle of integrated navigation[M]. Xi'an: Northwestern Polytechnical University Press, 2019: 78-105(in Chinese).
    [16] SAVAGE P G. Strapdown inertial navigation integration algorithm design Part 1: Attitude algorithms[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1): 19-28.
    [17] 秦永元, 张洪钺, 王叔华. 卡尔曼滤波与组合导航原理[M]. 2版. 西安: 西北工业大学出版社, 2012: 5-67.

    QIN Y Y, ZHANG H Y, WANG S H. Kalman filtering and principle of integrated navigation[M]. 2nd ed. Xi'an: Northwestern Polytechnical University Press, 2012: 5-67(in Chinese).
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  530
  • HTML全文浏览量:  265
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 录用日期:  2021-02-26
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回
    常见问答