[1] 孙瑞山, 韩文律.基于差异检验的飞行超限事件参数特征分析[J].中国安全生产科学技术,2011,7(2):22-27.SUN R S,HAN W L.Anaylysis on parameters characteristics of flight exceedance events based on distinction test[J].Journal of Safety Science and Technology,2011,7(2):22-27(in Chinese). [2] 郑磊, 池宏,邵雪焱.基于QAR数据的飞行操作模式及其风险分析[J].中国管理科学,2017,25(10):109-118.ZHENG L,CHI H,SHAO X Y.Pattern recognition and risk analysis for flight operations[J].Chinese Journal of Management Science,2017,25(10):109-118(in Chinese). [3] WANG L,REN Y,WU C X.Effects of flare operation on landing safety:A study based on ANOVA of real flight data[J].Safety Science,2018,102:14-25. [4] 汪磊, 郭世广,任勇.基于飞行数据正态云的着陆操作风险评价方法[J].安全与环境学报,2019,19(5):1555-1561.WANG L,GUO S G,REN Y.Landing operation risk evaluation based on the normal cloud of the flight data[J].Journal of Safety and Environment,2019,19(5):1555-1561(in Chinese). [5] LI L,DAS S,HANSMAN R J,et al.Analysis of flight data using clustering techniques for detecting abnormal operations[J].Journal of Aerospace Information Systems,2015,12(9):587-598. [6] SHERIDAN K,PURANIK T G,MANGORTEY E,et al.An application of DBSCAN clustering for flight anomaly detection during the approach phase[C]//AIAA SciTech Forum.Reston:AIAA,2020,1851:1-20. [7] EUGENE M,DYLAN M,JAMEY A,et al.Application of machine learning techniques to parameter selection for flight risk identification[C]//AIAA SciTech Forum.Reston:AIAA,2020,1850:1-39. [8] LI L,HANSMAN R J,PALACIOS R,et al.Anomaly detection via a Gaussian mixture model for flight operation and safety monitoring[J].Transportation Research Part C:Emerging Technologies,2016,64:4557. [9] MELNYK I,MATTHEWS B,VALIZADEGAN H,et al.Vector autoregressive model-based anomaly detection in aviation systems[J].Journal of Aerospace Information Systems,2016,13(4):161-173. [10] MELNYK I,BANERJEE A,MATTHEWS B,et al.Semi-Markov switching vector autoregressive model-based anomaly detection in aviation systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2016:1065-1074. [11] KEYGHOBADI H,SEYEDIN A.Abnormality detection in a landing operation using hidden Markov model[J].Journal of Computer & Robotics,2017,10(1):31-37. [12] LI J,PEDRYCZ W,JAMAL I.Multivariate time series anomaly detection:A framework of hidden Markov models[J].Applied Soft Computing,2017,60:229-240. [13] JIA Y Z,XU M Q,WANG R X.Symbolic important point perceptually and hidden Markov model based hydraulic pump fault diagnosis method[J].Sensors,2018,18(12):4460. [14] 霍纬纲,王慧芳.基于自编码器和隐马尔可夫模型的时间序列异常检测方法[J].计算机应用,2020,40(5):1329-1334.HUO W G,WANG H F.Time series anomaly detection method based on autoencoder and HMM[J].Journal of Computer Applications,2020,40(5):1329-1334(in Chinese). [15] MALHOTRA P,RAMAKRISHNAN A,ANAND G,et al.LSTM-based encoder-decoder for multi-sensor anomaly detection[C]//Anomaly Detection Workshop at 33rd International Conference on Machine Learning,2016. [16] 李航.统计学习方法[M].2版.北京:清华大学出版社,2019:193-201.LI H.Statistical learning method[M].2nd ed.Beijing:Tsinghua University Press,2019:193-201(in Chinese). [17] SRIVASTAVA N,MANSIMOV E,SALAKHUDINOV R.Unsupervised learning of video representations using LSTMs[C]//Proceedings of the 32nd International Conference on Machine Learning,2015,37:843-852. [18] 占欣.基于QAR数据的冲/偏出跑道风险评估研究[D].天津:中国民航大学,2019:15-20.ZHAN X.Research on risk evaluation of runway excursion based on QAR data[D].Tianjin:Civil Aviation University of China,2019:15-20(in Chinese). |