留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腹板开口对复合材料梁腹板剪切承载性能的影响

周睿 高维成 刘伟

周睿, 高维成, 刘伟等 . 腹板开口对复合材料梁腹板剪切承载性能的影响[J]. 北京航空航天大学学报, 2022, 48(5): 831-840. doi: 10.13700/j.bh.1001-5965.2020.0659
引用本文: 周睿, 高维成, 刘伟等 . 腹板开口对复合材料梁腹板剪切承载性能的影响[J]. 北京航空航天大学学报, 2022, 48(5): 831-840. doi: 10.13700/j.bh.1001-5965.2020.0659
ZHOU Rui, GAO Weicheng, LIU Weiet al. Effects of web cutout on bearing performance of composite beam webs under shear load[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 831-840. doi: 10.13700/j.bh.1001-5965.2020.0659(in Chinese)
Citation: ZHOU Rui, GAO Weicheng, LIU Weiet al. Effects of web cutout on bearing performance of composite beam webs under shear load[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 831-840. doi: 10.13700/j.bh.1001-5965.2020.0659(in Chinese)

腹板开口对复合材料梁腹板剪切承载性能的影响

doi: 10.13700/j.bh.1001-5965.2020.0659
基金项目: 

国家自然科学基金 11772110

详细信息
    通讯作者:

    高维成, E-mail: gaoweicheng@sina.com

  • 中图分类号: V214.8; TB330.1

Effects of web cutout on bearing performance of composite beam webs under shear load

Funds: 

National Natural Science Foundation of China 11772110

More Information
  • 摘要:

    针对平面编织复合材料梁腹板结构剪切载荷作用下的面内剪切屈曲失稳和后屈承载能力问题,采用实验与有限元方法进行了研究。结合实验所得应变分布规律与有限元分析所得失稳模态分析了梁腹板结构剪切失稳特点。后屈曲承载分析中引入了平面织物复合材料Hashin失效准则,获得的结构主要失效模式包括纬向纤维压溃和经向纤维拉断,与实验结果符合良好。基于经实验结果验证的有限元模型进行了参数化研究,分析了腹板开口尺寸和开口形式对平面织物复合材料梁腹板剪切稳定性、承载能力和破坏模式的影响。研究结果可为复合材料结构设计和强度评估提供参考。

     

  • 图 1  复合材料梁腹板试验件尺寸及铺层区域划分

    Figure 1.  Dimensions and lay-up region division of composite beam web specimen

    图 2  平面织物复合材料梁腹板剪切加载及剪切载荷

    Figure 2.  Shear loading and shear load of plain woven composite beam web

    图 3  复合材料梁腹板应变测点

    Figure 3.  Strain measurement points of composite beam web

    图 4  复合材料梁腹板有限元模型

    Figure 4.  Finite element model of composite beam web

    图 5  结构失稳模态有限元计算结果

    Figure 5.  Finite element calculation results of structural buckling mode

    图 6  W01试验件实验结果及有限元分析结果

    Figure 6.  Experimental and finite element analysis results of W01 specimen

    图 7  复合材料梁腹板结构破坏有限元分析结果

    Figure 7.  Finite element analysis results of structural damage of composite beam web

    图 8  复合材料梁腹板结构破坏实验结果

    Figure 8.  Experimental results of structural damage of composite beam web

    图 9  开孔复合材料梁腹板有限元模型

    Figure 9.  Finite element model of composite beam web with circular cutout

    图 10  开口尺寸对复合材料梁腹板结构临界失稳载荷和承载极限的影响

    Figure 10.  Effect of circular cutout dimension on critical buckling load and collapse load of composite beam webs

    图 11  开口尺寸对复合材料梁腹板失稳模态的影响

    Figure 11.  Effect of circular cutout dimension on buckling mode of composite beam webs

    图 12  开孔直径对复合材料梁腹板孔边应力状态的影响

    Figure 12.  Effect of circular cutout diameter on stress status around the cutout of composite beam webs

    图 13  开孔复合材料梁腹板破坏形式计算结果

    Figure 13.  Calculation results of failure mode of composite beam webs with circular cutout

    图 14  不同开口方向椭圆形开口及矩形开口复合材料梁腹板有限元模型

    Figure 14.  Finite element models of composite beam web with elliptical and rectangular cutouts in different directions

    图 15  开口方向对椭圆形开口及矩形开口复合材料梁腹板临界失稳载荷及承载极限的影响

    Figure 15.  Effect of cutout directions on critical buckling load and collapse load of composite beam web with elliptical and rectangular cutouts

    图 16  开口形状对复合材料梁腹板临界失稳载荷和承载极限的影响

    Figure 16.  Effect of cutout shape on critical buckling load and collapse load of composite beam webs

    表  1  复合材料梁腹板试验件不同区域铺层方式

    Table  1.   Lay-up sequences of composite beam web specimen in different regions

    区域 铺层方式
    缘条 [45/45/0/0/45/0/0/45/0/45/0]s
    外围区域腹板 [45/45/0/0/45/0/0/45/0/45/0]s
    中心区域腹板 [45/0/0/45/0]s
    下载: 导出CSV

    表  2  平面织物复合材料属性

    Table  2.   Properties of plain woven composite material

    参数 数值
    E11/GPa 56.85
    E22/GPa 56.85
    G12/GPa 3.86
    ν12 0.042
    XT/MPa 717
    XC/MPa 597
    YT/MPa 717
    YC/MPa 597
    S12/MPa 128
    下载: 导出CSV

    表  3  平面织物复合材料损伤起始准则及材料性能退化

    Table  3.   Damage initiation criteria and property degradation of plain woven composite material

    损伤类型 失效准则 材料性能退化
    经向纤维拉伸损伤 E11=0.1E11, G12=0.1G12, υ12=0.1υ12
    经向纤维压缩损伤
    纬向纤维拉伸损伤 E22=0.1E22, G12=0.1G12, υ12=0.1υ12
    纬向纤维压缩损伤
    注:σ11为1方向(经向纤维束方向)正应力,τ12为面内剪切应力,σ22为2方向(纬向纤维束方向)正应力。
    下载: 导出CSV

    表  4  复合材料梁腹板临界失稳载荷实验与有限元分析结果

    Table  4.   Experimental and finite element analysis results of critical buckling load of composite beam web

    试验件编号 结构失稳载荷实验值/kN 承载极限实验结果/kN 结构失稳载荷实验平均值/kN 承载极限实验结果平均值/kN 临界失稳载荷有限元分析结果/kN 承载极限有限元分析结果/kN
    W01 36.9 68.0 37.3 63.3 38.0 65.2
    W02 37.7 61.7
    W03 36.1 61.6
    W04 38.6 61.7
    下载: 导出CSV
  • [1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinaca, 2008, 25(1): 1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [2] STEVENS K, RICCI R, DAVIES G. Buckling and post-buckling of composite structures[J]. Composites, 1995, 26(3): 189-199. doi: 10.1016/0010-4361(95)91382-F
    [3] PEDRO B D, DINAR C. Post-buckling behavior and strength of cold-formed steel lipped channel columns experiencing distortional/global interaction[J]. Computers and Structures, 2011, 89(3-4): 422-434. doi: 10.1016/j.compstruc.2010.11.015
    [4] ZIMMERMANN R, KLEIN H, KLING A. Buckling and post-buckling of stiffener-stiffened fiber composite curved panels-test and computations[J]. Composite Structures, 2006, 13(2): 150-161.
    [5] BAILEY R, WOOD J. Stability characteristics of composite panels with various cutout geometries[J]. Composite Structures, 1996, 35(1): 21-31. doi: 10.1016/0263-8223(96)00021-9
    [6] REZAEEPAZHAND J, JAFARI M. Stress analysis of perforated composite plates[J]. Composite Structures, 2005, 71(3-4): 463-468. doi: 10.1016/j.compstruct.2005.09.017
    [7] KUMAR D, SINGH S B. Stability and failure of composite laminates with various shaped cutouts under combined in-plane loads[J]. Composites Part B-Engineering, 2012, 43(2): 142-149. doi: 10.1016/j.compositesb.2011.09.005
    [8] KUMAR D, SINGH S B. Effects of flexural boundary conditions on failure and stability of composite laminate with cutouts under combined in-plane loads[J]. Composites Part B-Engineering, 2013, 45(1): 657-665. doi: 10.1016/j.compositesb.2012.08.016
    [9] LI X, GAO W, LIU W. The bearing behavior and failure characteristic of CFRP laminate with cutout under shearing load: Part 1, Experiments[J]. Composite Structures, 2016, 141: 355-365. doi: 10.1016/j.compstruct.2015.12.069
    [10] 张健, 刘伟, 高维成. 开孔补强对受剪复合材料工字型梁腹板稳定性的影响研究[J]. 船舶力学, 2018, 22(10): 1241-1248. doi: 10.3969/j.issn.1007-7294.2018.10.008

    ZHANG J, LIU W, GAO W C. Effect of cutout and edge reinforcement on buckling and post-buckling responses of composite Ⅰ-section beams under shear load[J]. Journal of Ship Mechanics, 2018, 22(10): 1241-1248(in Chinese). doi: 10.3969/j.issn.1007-7294.2018.10.008
    [11] ZHANG J, LIU W, GAO W C. Failure behavior and strength of composite Ⅰ-section beam with double cutouts and stiffener reinforcement[J]. Applied Composite Materials, 2018, 25: 1385-1400. doi: 10.1007/s10443-018-9672-6
    [12] 张修路, 杜芳静, 王锡芝. 剪切载荷作用下复合材料机翼梁腹板开口分析[J]. 沈阳航空航天大学学报, 2018, 35(6): 50-56. doi: 10.3969/j.issn.2095-1248.2018.06.007

    ZHANG X L, DU F J, WANG X Z. Analysis on openings of composite laminated aircraft wing beam web under shear load[J]. Journal of Shenyang Aerospace University, 2018, 35(6): 50-56(in Chinese). doi: 10.3969/j.issn.2095-1248.2018.06.007
    [13] 张讯, 葛建彪. 基于NASTRAN的复合材料后梁稳定性优化设计与开口补强分析[J]. 民用飞机设计与研究, 2019, 1: 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201901009.htm

    ZHANG X, GE J B. Optimal design and opening strengthen analysis of composite rear spar stability based on Nastran[J]. Civil Aircraft Design & Research, 2019, 1: 11-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201901009.htm
    [14] ASADI A, SHEIKH A H, THOMSEN O T. Buckling behavior of thin-walled laminated composite beams having open and closed sections subjected to axial and end moment loading[J]. Thin-Walled Structures, 2019, 141: 85-96. doi: 10.1016/j.tws.2019.04.005
    [15] 赵娜, 张博平, 刘向东. 复合材料开孔加筋壁板剪切试验与数值分析[J]. 科学技术与工程, 2012, 12(13): 3155-3159. doi: 10.3969/j.issn.1671-1815.2012.13.027

    ZHAO N, ZHANG B P, LIU X D. Shear experimental and numerical analysis of composite ribbed panel with open hole structure[J]. Science Technology and Engineering, 2012, 12(13): 3155-3159(in Chinese). doi: 10.3969/j.issn.1671-1815.2012.13.027
    [16] 刘婷. 复合材料层合板的开口补强研究进展[J]. 航空工程进展, 2013, 4(1): 10-16. doi: 10.3969/j.issn.1674-8190.2013.01.002

    LIU T. Cutout reinforcement research progress of composite laminates[J]. Advances in Aeronautical Science and Engineering, 2013, 4(1): 10-16(in Chinese). doi: 10.3969/j.issn.1674-8190.2013.01.002
    [17] 邹健, 程小全, 邵世纲, 等. 基于ANSYS环境的平面编织层合板拉伸破坏数值仿真[J]. 复合材料学报, 2007, 24(6): 180-184. doi: 10.3321/j.issn:1000-3851.2007.06.030

    ZOU J, CHENG X Q, SHAO S G, et al. Numerical simulation for plain woven composite laminate based on ANSYS software[J]. Acta Materiae Compositae Sinaca, 2007, 24(6): 180-184(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.06.030
    [18] 胡博海, 李亚智, 樊振兴, 等. 复合材料梁腹板在弯剪复合载荷作用下的屈曲和后屈曲研究[J]. 机械强度, 2014, 36(6): 916-921. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201406016.htm

    HU B H, LI Y Z, FAN Z X, et al. Buckling and post-buckling of a composite web beam under shearing bending[J]. Journal of Mechanical Strength, 2014, 36(6): 916-921(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201406016.htm
    [19] REDDY Y S, REDDY J N. Three-dimensional finite element progressive failure analysis of composite laminates under axial extension[J]. Composites Technology and Research, 1993, 15(2): 73-87. doi: 10.1520/CTR10358J
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  138
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 录用日期:  2021-03-19
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回
    常见问答