留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正负极动力学特性的锂离子电池优化充电方法

张彩萍 李峰 张琳静 王宇斌 贾新羽 张维戈

张彩萍, 李峰, 张琳静, 等 . 基于正负极动力学特性的锂离子电池优化充电方法[J]. 北京航空航天大学学报, 2022, 48(5): 725-735. doi: 10.13700/j.bh.1001-5965.2020.0660
引用本文: 张彩萍, 李峰, 张琳静, 等 . 基于正负极动力学特性的锂离子电池优化充电方法[J]. 北京航空航天大学学报, 2022, 48(5): 725-735. doi: 10.13700/j.bh.1001-5965.2020.0660
ZHANG Caiping, LI Feng, ZHANG Linjing, et al. Optimized charging method of lithium-ion batteries based on dynamic characteristics of electrodes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 725-735. doi: 10.13700/j.bh.1001-5965.2020.0660(in Chinese)
Citation: ZHANG Caiping, LI Feng, ZHANG Linjing, et al. Optimized charging method of lithium-ion batteries based on dynamic characteristics of electrodes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 725-735. doi: 10.13700/j.bh.1001-5965.2020.0660(in Chinese)

基于正负极动力学特性的锂离子电池优化充电方法

doi: 10.13700/j.bh.1001-5965.2020.0660
基金项目: 

国家自然科学基金 52007006

国家自然科学基金 51977007

国家自然科学基金 61633015

详细信息
    通讯作者:

    张琳静, E-mail: lj.zhang@bjtu.edu.cn

  • 中图分类号: TM912

Optimized charging method of lithium-ion batteries based on dynamic characteristics of electrodes

Funds: 

National Natural Science Foundation of China 52007006

National Natural Science Foundation of China 51977007

National Natural Science Foundation of China 61633015

More Information
  • 摘要:

    针对电动汽车快速充电存在的问题,分别对锂离子电池正、负极充放电特性进行研究,提出了优化充电方案。以负极析锂抑制为边界条件,获得正、负极在不同状态(SOC)下的最大允许充放电电流,建立了充电过程能耗和充电时间目标函数,以最大允许充电电流为约束条件,利用粒子群算法得到最优多阶段恒流充电电流序列。结果表明:与1 C恒流充电相比,电池充入相同容量时,优化充电时间减少约26.5%,34 min即可充电至80%SOC;与优化充电电流序列的平均电流恒流充电相比,优化充电能耗降低约1.5%。

     

  • 图 1  不同倍率充电和放电比容量

    Figure 1.  Charging and discharging specific capacity at different rates

    图 2  不同倍率充电和放电曲线

    Figure 2.  Charging and discharging curves at different rates

    图 3  正极半电池和负极半电池欧姆极化电压

    Figure 3.  Ohmic polarization voltages of positive and negative half cell

    图 4  正极半电池和负极半电池电化学极化电压

    Figure 4.  Electrochemical polarization voltages of positive and negative half cell

    图 5  半电池SOC尺度下正极最大充电倍率和负极最大放电倍率

    Figure 5.  Maximum positive charging rates and negative discharging rates with scale of half-cell SOC

    图 6  正、负极半电池与全电池SOC对应关系

    Figure 6.  Corresponding relationship between positive/negative half-cell SOC and full-cell SOC

    图 7  全电池SOC尺度下正极最大充电倍率和负极最大放电倍率

    Figure 7.  Maximum positive charging rates and negative discharging rates with scale of full-cell SOC

    图 8  二阶等效电路模型

    Figure 8.  Second-order equivalent circuit model

    图 9  全电池二阶等效电路模型仿真结果

    Figure 9.  Simulation results of second-order equivalent circuit model of full cell

    图 10  电池优化充电电流序列

    Figure 10.  Optimized charging current pattern of battery

    图 11  全电池充电电流与电压曲线对比

    Figure 11.  Comparison of charging current and voltage curves of full cell

    表  1  0.5 C倍率下全电池二阶等效电路模型参数

    Table  1.   Model parameters of full-cell second-order equivalent circuit at 0.5 C rate

    SOC/% Rohm Rp1 Cp1/F Rp2 Cp2/F
    10 0.001 5 0.001 3 17 483 0.000 10 8 839
    20 0.001 3 0.000 66 21 249 0.000 074 13 505
    30 0.001 2 0.000 63 23 938 0.000 080 15 093
    40 0.001 2 0.000 60 25 936 0.000 091 13 779
    50 0.001 2 0.000 69 23 618 0.000 097 14 300
    60 0.001 2 0.000 97 22 492 0.000 11 13 299
    70 0.001 2 0.000 63 28 067 0.000 12 12 520
    80 0.001 2 0.000 63 26 217 0.000 12 10 588
    90 0.001 0 0.000 50 27 683 0.000 10 11 407
    下载: 导出CSV

    表  2  优化充电与传统充电方法时间和能耗对比

    Table  2.   Comparison of charging time and energy consumption between optimized charging method and traditional charging method

    充电方法 充电时间/s 充电能耗/J
    1 C恒流 2 779
    平均优化电流恒流 46 932
    优化充电 2 042 46 226
    下载: 导出CSV
  • [1] TOMASZEWSKA A, CHU Z Y, FENG X, et al. Lithium-ion battery fast charging: A review[J]. eTransportation, 2019, 1: 100011. doi: 10.1016/j.etran.2019.100011
    [2] LIN X, PEREZH E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of Power Sources, 2014, 257: 1-11. doi: 10.1016/j.jpowsour.2014.01.097
    [3] YOUREY W, FU Y, LI N, et al. Determining accelerated charging procedure from half cell characterization[J]. Journal of the Electrochemical Society, 2019, 166(8): A1432-A1438. doi: 10.1149/2.0591908jes
    [4] AMANOR-BOADU J M, GUISEPPI-ELIE A, SANCHEZ-SINENCIO E. The impact of pulse charging parameters on the life cycle of lithium-ion polymerbatteries[J]. Energies, 2018, 11(8): 2162. doi: 10.3390/en11082162
    [5] SONG M, CHOE S Y. Fast and safe charging method suppressing side reaction and lithium deposition reaction in lithium ion battery[J]. Journal of Power Sources, 2019, 436: 226835. doi: 10.1016/j.jpowsour.2019.226835
    [6] YANG X, WANG C. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries[J]. Journal of Power Sources, 2018, 402: 489-498. doi: 10.1016/j.jpowsour.2018.09.069
    [7] WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells-A review[J]. Journal of Power Sources, 2018, 384: 107-124. doi: 10.1016/j.jpowsour.2018.02.063
    [8] CHU Z, FENG Y, OUYANG M, et al. Optimal charge current of lithium ion battery[J]. Energy Procedia, 2017, 142: 1867-1873. doi: 10.1016/j.egypro.2017.12.577
    [9] XU M, WANG R, ZHAO P, et al. Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model[J]. Journal of Power Sources, 2019, 438: 227015. doi: 10.1016/j.jpowsour.2019.227015
    [10] HUSSEIN A A H, BATARSEH I. A review of charging algorithms for nickel and lithium battery chargers[J]. IEEE Transactions on Vehicular Technology, 2011, 60(3): 830-838. doi: 10.1109/TVT.2011.2106527
    [11] LU B, ZHAO Y, SONG Y, et al. Stress-limited fast charging methods with time-varying current in lithium-ion batteries[J]. Electrochimica Acta, 2018, 288: 144-152. doi: 10.1016/j.electacta.2018.09.009
    [12] NOTTEN P H L, OP HET VELD J H G, VAN BEEK J R G. Boostcharging Li-ion batteries: A challenging new charging concept[J]. Journal of Power Sources, 2005, 145(1): 89-94. doi: 10.1016/j.jpowsour.2004.12.038
    [13] ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. Journal of Power Sources, 2006, 160(2): 1349-1354. doi: 10.1016/j.jpowsour.2006.02.087
    [14] CHEN L. A design of an optimal battery pulse charge system by frequency-varied technique[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 398-405. doi: 10.1109/TIE.2006.888796
    [15] DE JONGH P E, NOTTEN P H L. Effect of current pulses on lithium intercalation batteries[J]. Solid State Ionics, 2002, 148(3-4): 259-268. doi: 10.1016/S0167-2738(02)00062-0
    [16] LI J, MURPHY E, WINNICK J, et al. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries[J]. Journal of Power Sources, 2001, 102(1-2): 302-309. doi: 10.1016/S0378-7753(01)00820-5
    [17] LIN X, HAO X, LIU Z, et al. Health conscious fast charging of Li-ion batteries via a single particle model with aging mechanisms[J]. Journal of Power Sources, 2018, 400: 305-316. doi: 10.1016/j.jpowsour.2018.08.030
    [18] LEE C H, CHANG T W, HSU S H, et al. Taguchi-based PSO for searching an optimal four-stage charge pattern of Li-ion batteries[J]. Journal of Energy Storage, 2019, 21: 301-309. doi: 10.1016/j.est.2018.11.031
    [19] LI Y, LI K, XIE Y, et al. Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant currente-constant voltage charging strategy[J]. Renewable Energy, 2020, 146: 2688-2699. doi: 10.1016/j.renene.2019.08.077
    [20] LIU K, ZOU C, LI K, et al. Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model[J]. IEEE Transactions on Industrial Electronics, 2018, 14(12): 5463-5474. doi: 10.1109/TII.2018.2866493
    [21] SURESH R, RENGASWAMY R. Modeling and control of battery systems. Part Ⅱ: A model predictive controller for optimal charging[J]. Computers and Chemical Engineering, 2018, 119: 326-335. doi: 10.1016/j.compchemeng.2018.08.017
    [22] LIU K, HU X, YANG Z, et al. Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation[J]. Energy Conversion and Management, 2019, 195: 167-179. doi: 10.1016/j.enconman.2019.04.065
    [23] LEE C H, CHEN M Y, HSU S H, et al. Implementation of an SOC-based four-stage constant current charger for Li-ion batteries[J]. Journal of Energy Storage, 2018, 18: 528-537. doi: 10.1016/j.est.2018.06.010
    [24] LIU Y H, HSIEH C H, LUO Y F. Search for an optimal five-step charging pattern for Li-ion batteries using consecutive orthogonal arrays[J]. IEEE Transactions on Energy Conversion, 2011, 26(2): 654-661. doi: 10.1109/TEC.2010.2103077
    [25] SVOBODA V, DOERING H, GARCHE J. The influence of fast charging on the performance of VRLA batteries[J]. Journal of Power Sources, 2005, 144(1): 244-254. doi: 10.1016/j.jpowsour.2004.12.026
    [26] ZHANG C, JIANG J, GAO Y, et al. Charging optimization in lithium-ion batteries based on temperature rise and charge time[J]. Applied Energy, 2017, 194: 569-577. doi: 10.1016/j.apenergy.2016.10.059
    [27] ZHANG S, ZHANG C, XIONG R, et al. Study on the optimal charging strategy for lithium-ion batteries used in electric vehicles[J]. Energies, 2014, 7(10): 6783-6797. doi: 10.3390/en7106783
    [28] GUO Z, LIAW B Y, QIU X, et al. Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging[J]. Journal of Power Sources, 2015, 274: 957-964. doi: 10.1016/j.jpowsour.2014.10.185
    [29] SPINGLER F B, WITTMANN W, STURM J, et al. Optimum fast charging of lithium-ion pouch cells based on local volume expansion criteria[J]. Journal of Power Sources, 2018, 393: 152-160. doi: 10.1016/j.jpowsour.2018.04.095
    [30] SABET P S, STAHL G, SAUER D U. Non-invasive investigation of predominant processes in the impedance spectra of high energy lithium-ion batteries with Nickel-Cobalt-Aluminum cathodes[J]. Journal of Power Sources, 2018, 406: 185-193. doi: 10.1016/j.jpowsour.2018.10.024
    [31] LI Z, HUANG J, LIAN B Y, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182. doi: 10.1016/j.jpowsour.2013.12.099
    [32] UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. Journal of Power Sources, 2015, 279: 428-438. doi: 10.1016/j.jpowsour.2015.01.046
    [33] JIA X, ZHANG C, WANG L, et al. The degradation characteristics and mechanism of Li[Ni0.5Co0.2Mn0.3]O2 batteries at different temperatures and discharge current rates[J]. Journal of the Electrochemical Society, 2020, 167(2): 20503. doi: 10.1149/1945-7111/ab61e9
    [34] GAO Y, YANG S, JIANG J, et al. The mechanism and characterization of accelerated capacity deterioration for lithium-ion battery with Li(NiMnCo)O2 cathode[J]. Journal of the Electrochemical Society, 2019, 166(8): A1623-A1635. doi: 10.1149/2.1001908jes
    [35] HARIHARAN K S, KUMAR V S. A nonlinear equivalent circuit model for lithium ion cells[J]. Journal of Power Sources, 2013, 222: 210-217. doi: 10.1016/j.jpowsour.2012.08.090
    [36] JIANG J, LIU Q, ZHANG C, et al. Evaluation of acceptable charging current of power Li-ion batteries based on polarization characteristics[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6844-6851. doi: 10.1109/TIE.2014.2320219
    [37] PATNAIK L, PRANEETH A V J S, WILLIAMSON S. A closed-loop constant-temperature constant-voltage charging technique to reduce charge time of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1059-1067. doi: 10.1109/TIE.2018.2833038
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  268
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 录用日期:  2020-12-09
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回
    常见问答