[1] LI W,ZHAO L,LIN Z J,et al.Non-local image inpainting using low-rank matrix completion[J].Computer Graphics Forum,2015,34(6):111-122. [2] HU Y,ZHANG D,YE J,et al.Fast and accurate matrix completion via truncated nuclear norm regularization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(9):2117-2130. [3] 陈蕾, 陈松灿.矩阵补全模型及其算法研究综述[J].软件学报,2017,28(6):1547-1564.CHEN L,CHEN S C.Survey on matrix completion models and algorithms[J].Journal of Software,2017,28(6):1547-1564(in Chinese). [4] XUE S K,QIU W Y,LIU F,et al.Double weighted truncated nuclear norm regularization for low-rank matrix completion[EB/OL].(2019-01-07)[2020-11-01],https://arxiv.org/abs/1901.01711. [5] WANG H Y,ZHAO R Z,CEN Y G.Rank adaptive atomic decomposition for low-rank matrix completion and its application on image recovery[J].Neurocomputing,2014,145:374-380. [6] LIU G,LIN Z,YAN S,et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):171-184. [7] RECHT B,FAZEL M,PARRILO P A.Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J].SIAM Review,2010,52(3):471-501. [8] 杨润宇,贾亦雄,徐鹏,等.截断核范数和全变差正则化高光谱图像复原[J].中国图象图形学报,2019,24(10):1801-1812. YANG R Y,JIA Y X,XU P,et al.Hyperspectral image restoration with truncated nuclear norm minimization and total variation regularization[J].Journal of Image and Graphics,2019,24(10):1801-1812(in Chinese). [9] NIE F,HUANG H,DING C.Low-rank matrix recovery via efficient Schatten p-norm minimization[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence,2012:655-661. [10] FENG L,SUN H J,SUN Q S,et al.Image compressive sensing via truncated Schatten-p norm regularization[J].Signal Processing:Image Communication,2016,47:28-41. [11] YANG J Y,YANG X M,YE X C,et al.Reconstruction of structurally-incomplete matrices with reweighted low-rank and sparsity priors[J].IEEE Transactions on Image Processing,2017,26(3):1158-1172. [12] CANDōS E,RECHT B.Exact matrix completion via convex optimization[J].Communications of the ACM,2012,55(6):111-119. [13] LIN Z C,CHEN M M,MA Y.The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL].(2013-10-18)[2020-11-01].https://arxiv.org/abs/1009.5055. [14] CAI J F,CANDS E J,SHEN Z W.A singular value thresholding algorithm for matrix completion[J].SIAM Journal on Optimization,2010,20(4):1956-1982. [15] TOH K C,YUN S.An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J].Pacific Journal of Optimization,2010,6(3):615-640. [16] YANG J C,WRIGHT J,HUANG T S,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873. [17] LIANG X,REN X,ZHANG Z,et al.Repairing sparse low-rank texture[C]//European Conference on Computer Vision.Berlin:Springer,2012:482-495. [18] DONG J,XUE Z C,GUAN J,et al.Low rank matrix completion using truncated nuclear norm and sparse regularizer[J].Signal Processing:Image Communication,2018,68:76-87. [19] 王家寿, 盛伟,王保云.图像修复中截断P范数正则化的矩阵填充算法[J].湖南师范大学自然科学学报,2019,42(2):71-79.WANG J S,SHENG W,WANG B Y.Matrix completion via truncated Schatten p-norm regularization in image inpainting[J].Journal of Natural Science of Hunan Normal University,2019,42(2):71-79(in Chinese). [20] BOYD S.Distributed optimization and statistical learning via the alternating direction method of multipliers[M].Hanover:Now Publishers,2010:3. [21] MERHAV N,KRESCH R.Approximate convolution using DCT coefficient multipliers[J].IEEE Transactions Circuits and Systems for Video Technology,1998,8(4):378-385. [22] ZUO W M,MENG D Y,ZHANG L,et al.A generalized iterated shrinkage algorithm for non-convex sparse coding[C]//2013 International Conference on Computer Vision.Piscataway:IEEE Press,2013:217-224. [23] DONOHO D L,JOHNSTONE I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of the American Statistical Association,1995,90(432):1200-1224. [24] ELHARROUSS O,ALMAADEED N,ALMAADEED S,et al.Image inpainting:A review[J].Neural Processing Letters,2020,51(2):2007-2028. |