北京航空航天大学学报 ›› 2022, Vol. 48 ›› Issue (5): 855-862.doi: 10.13700/j.bh.1001-5965.2020.0663

• 论文 • 上一篇    下一篇

融合低秩和稀疏先验的结构性缺失图像修复

胡循勇, 杨晓梅, 李昊怡, 梅宇博, 郑秀娟, 刘凯   

  1. 四川大学 电气工程学院, 成都 610065
  • 收稿日期:2020-11-26 发布日期:2022-05-30
  • 通讯作者: 杨晓梅 E-mail:yangxiaomei@scu.edu.cn
  • 基金资助:
    四川省科技计划项目(重点研发项目)(2020YFS0085)

Structural missing image inpainting based on low rank and sparse prior

HU Xunyong, YANG Xiaomei, LI Haoyi, MEI Yubo, ZHENG Xiujuan, LIU Kai   

  1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China
  • Received:2020-11-26 Published:2022-05-30
  • Supported by:
    Science and Technology Program of Province Sichuan (Key Research and Development Program)(2020YFS0085)

摘要: 针对基于低秩先验的图像矩阵补全算法无法有效处理结构性缺失图像修复的问题,建立了在观测矩阵上使用双重先验的矩阵补全模型,在低秩先验的基础上引入稀疏先验,以便更好地利用观测矩阵的先验特征。该模型根据行列间的相关性,使用低秩先验对矩阵正则化;根据行列内的相关性,使用稀疏先验对矩阵正则化;为了更加精确地逼近秩函数,使用截断Schatten-p范数替代核范数作为低秩先验,从而提出了融合低秩和稀疏先验的矩阵补全模型,并使用交替方向乘子法有效处理所提模型。实验结果表明:算法修复的图像细节清晰,与截断核范数模型算法相比,峰值信噪比和结构相似度提升范围分别为2%~44%和0.7%~8%。

关键词: 稀疏先验, 矩阵补全, 截断Schatten-p范数, 图像修复, 交替方向乘子法

Abstract: To handle the problem that the image matrix completion algorithm based on low rank prior cannot effectively deal with the structural missing image inpainting, a matrix completion model using double prior on the observation matrix was established. The sparse prior was integrated with low rank prior, so as to make better use of the prior characteristics of the observation matrix. The model used low rank prior and sparse prior to regularize the matrix by using the correlation between rows and columns and within the row and column, respectively. Furthermore, in order to more accurately approximate the rank function, the truncated Schatten-p norm was used to replace the nuclear norm as the low rank prior. Thus, a matrix completion model integrating low rank and sparse prior was proposed, and the alternating direction method of multiplier was used to solve the proposed completion model effectively. The experimental results show that the details of the inpainting image are clear. Compared with the truncated nuclear norm model algorithm, the corresponding improvement ranges of peak signal-to-noise ratio and structure similarity are 2%-44% and 0.7%-8%, respectively.

Key words: sparse prior, matrix completion, truncated Schatten-p norm, image inpainting, alternating direction method of multipliers

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发