留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于副气囊的平流层浮空器高度控制

林康 马云鹏 郑泽伟 武哲

林康, 马云鹏, 郑泽伟, 等 . 基于副气囊的平流层浮空器高度控制[J]. 北京航空航天大学学报, 2022, 48(5): 762-770. doi: 10.13700/j.bh.1001-5965.2020.0679
引用本文: 林康, 马云鹏, 郑泽伟, 等 . 基于副气囊的平流层浮空器高度控制[J]. 北京航空航天大学学报, 2022, 48(5): 762-770. doi: 10.13700/j.bh.1001-5965.2020.0679
LIN Kang, MA Yunpeng, ZHENG Zewei, et al. Height control of stratospheric aerostat based on secondary airbag[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 762-770. doi: 10.13700/j.bh.1001-5965.2020.0679(in Chinese)
Citation: LIN Kang, MA Yunpeng, ZHENG Zewei, et al. Height control of stratospheric aerostat based on secondary airbag[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 762-770. doi: 10.13700/j.bh.1001-5965.2020.0679(in Chinese)

基于副气囊的平流层浮空器高度控制

doi: 10.13700/j.bh.1001-5965.2020.0679
详细信息
    通讯作者:

    马云鹏, E-mail: myp@buaa.edu.cn

  • 中图分类号: V273

Height control of stratospheric aerostat based on secondary airbag

More Information
  • 摘要:

    浮空器悬停或飞行控制设计时,通常将风作为干扰项或阻力,螺旋桨需要消耗大量的能源克服风的阻力,而浮空器携带的能源有限,因此浮空器设计时存在欠能源问题。根据平流层风场的特点,采用副气囊控制浮空器的高度,实现平流层不同高度的风场利用,可以减小浮空器的能源消耗。建立浮空器高度控制模型,采用反步法设计浮空器高度控制器,利用状态观测器对浮空器的模型误差和输入误差进行估计,并进行了仿真分析,证明所设计的控制器能有效控制浮空器的高度。建立浮空器高度控制时其囊体内外压差变化模型,仿真分析表明, 浮空器高度变化后,其囊体最终内外压差与初始压差相同。

     

  • 图 1  浮空器结构

    Figure 1.  Structure of aerostat

    图 2  浮空器高度控制器结构

    Figure 2.  Structure of aerostat height controller

    图 3  浮空器高度变化

    Figure 3.  Height change of aerostat

    图 4  浮空器速度变化

    Figure 4.  Velocity change of aerostat

    图 5  控制输入量变化

    Figure 5.  Control input change

    图 6  浮空器质量变化

    Figure 6.  Mass change of aerostat

    图 7  囊体内外压差变化

    Figure 7.  Change of pressure difference between inside and outside of airbag

    图 8  副气囊体积变化

    Figure 8.  Volume change of secondary airbag

    图 9  不同充气速度时浮空器囊体内外压差变化

    Figure 9.  Change of pressure difference between inside and outside of aerostat airbag at different inflation speeds

    图 10  不同充气速度时浮空器高度变化

    Figure 10.  Height change of aerostat at different inflation speeds

    图 11  不同充气速度时浮空器速度变化

    Figure 11.  Velocity change of aerostat at different inflation speeds

    图 12  不同充气速度时浮空器质量变化

    Figure 12.  Mass change of aerostat at different inflation speeds

    表  1  浮空器模型初始参数

    Table  1.   Initial parameters of aerostat model

    参数 数值
    m/kg 2 000
    V/m3 22 522
    S/m2 938
    α3 1 264
    Cd 0.5
    下载: 导出CSV

    表  2  控制器参数

    Table  2.   Controller parameters

    参数 数值
    kz 1/500
    kw 2
    kΛ 1 000
    kz0 1/1 000
    kw0 2
    kΛ0 2
    下载: 导出CSV
  • [1] RONEY J A. Statistical wind analysis for near-space applications[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(13): 1485-1501. doi: 10.1016/j.jastp.2007.05.005
    [2] YANG Y, WU J, ZHENG W. Design, modeling and control for a stratospheric telecommunication platform[J]. Acta Astronautica, 2012, 80(6): 181-189.
    [3] GRACE D, MOHORCIC M. Broadband communications via high-altitude platforms[M]. New York: John Wiley and Sons Ltd., 2011.
    [4] MIURA R, SUZUKI M. Preliminary flight test program on telecom and broadcasting using high altitude platform station[J]. Wireless Personal Communications, 2003, 24(2): 341-361. doi: 10.1023/A:1022507025134
    [5] GONZALO J, LÓPEZ D, DOMÍNGUEZ D, et al. On the capabilities and limitations of high-altitude pseudo-satellites[J]. Progress in Aerospace Sciences, 2018, 98: 37-56. doi: 10.1016/j.paerosci.2018.03.006
    [6] D'OLIVEIRA F A, FRANCISCO C L D, TESSALENO C D. High-altitude platforms present situation and technology trends[J]. Journal of Aerospace Technology and Management, 2016, 8(3): 249-262. doi: 10.5028/jatm.v8i3.699
    [7] 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601004.htm

    ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautics et Astronautica Sinica, 2016, 37(1): 45-56 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601004.htm
    [8] 陶梦初, 何金海, 刘毅. 平流层准零风层统计特征及准两年周期振荡对其影响分析[J]. 气候与环境研究, 2012, 17(1): 92-102. doi: 10.3878/j.issn.1006-9585.2011.10087

    TAO M C, HE J H, LIU Y. Analysis of the characteristics of the stratospheric quasi-zero wind layer and the effects of quasi-biennial oscillation on it[J]. Climatic and Environmental Research, 2012, 17(1): 92-102(in Chinese). doi: 10.3878/j.issn.1006-9585.2011.10087
    [9] BELMONT A D, DARTT D G, NASTROM G D. Variations of stratospheric zonal winds, 20-65 km, 1961-1971[J]. Journal of Applied Meteorology, 1975, 14(4): 585-594. doi: 10.1175/1520-0450(1975)014<0585:VOSZWK>2.0.CO;2
    [10] WANG G. Low stratospheric zero wind layer measurement with rayleigh doppler lidar[C]//International Symposium on Photoelectronic Detection and Imaging. Piscataway: IEEE Press, 2013: 890-504.
    [11] BRADFORD L W, ROBERTS L C. Improved models of upper-level wind for several astronomical observatories[J]. Physics, 2010, 19(2): 820-837.
    [12] FESEN R, BROWN Y. A method for establishing a long duration, stratospheric platform for astronomical research[J]. Experimental Astronomy, 2015, 39(3): 475-493. doi: 10.1007/s10686-015-9459-9
    [13] XU M, HUO W. Orbit control of a stratospheric satellite with parameter uncertainties[J]. Advances in Space Research, 2016, 58(11): 2341-2351. doi: 10.1016/j.asr.2016.08.015
    [14] 符文星, 朱苏朋, 闫杰, 等. 平流层卫星轨道控制系统研究[J]. 宇航学报, 2008, 29(5): 1480-1484. doi: 10.3873/j.issn.1000-1328.2008.05.003

    FU W X, ZHU S P, YAN J, et al. Orbit control system for stratospheric satellite[J]. Journal of Astronautics, 2008, 29(5): 1480-1484(in Chinese). doi: 10.3873/j.issn.1000-1328.2008.05.003
    [15] AARON K M, HEUN M K, NOCK K T. A method for balloon trajectory control[J]. Advances in Space Research, 2002, 30(5): 1227-1232. doi: 10.1016/S0273-1177(02)00526-4
    [16] VANDERMEULEN I, GUAY M, MCLELLAN P J. Formation control of high-altitude balloons by distributed extremum seeking control[C]//American Control Conference. Piscataway: IEEE Press, 2016: 2524-2529.
    [17] VANDERMEULEN I, GUAY M, MCLELLAN P J. Distributed control of high-altitude balloon formation by extremum-seeking control[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 857-873. doi: 10.1109/TCST.2017.2692742
    [18] LIN K, ZHENG Z, WU Z, et al. Path following of a stratospheric satellite by the aid of wind currents[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(11): 3983-4003. doi: 10.1177/0954410018811414
    [19] 邓小龙, 李魁, 于春锐, 等. 准零风层新型临近空间浮空器区域驻留性能[J]. 国防科技大学学报, 2019, 41(1): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201901002.htm

    DENG X L, LI K, YU C R, et al. Station-keeping performance of novel near-space aerostat in quasi-zero wind layer[J]. Journal of National University of Defense Technology, 2019, 41(1): 5-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201901002.htm
    [20] CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based control and related methods an overview[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083-1095. doi: 10.1109/TIE.2015.2478397
    [21] HU J, ZHANG H. Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles[J]. Automatica, 2013, 49(7): 2160-2167. doi: 10.1016/j.automatica.2013.03.019
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  234
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 录用日期:  2021-01-08
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回
    常见问答