北京航空航天大学学报 ›› 2021, Vol. 47 ›› Issue (9): 1927-1932.doi: 10.13700/j.bh.1001-5965.2020.0681

• 论文 • 上一篇    

基于EMD的MEMS陀螺仪随机漂移分析方法

李文华, 汪立新, 沈强, 李成   

  1. 火箭军工程大学 导弹工程学院, 西安 710025
  • 收稿日期:2020-12-07 发布日期:2021-10-09
  • 通讯作者: 汪立新 E-mail:wlxxian@sina.com
  • 基金资助:
    陕西省自然科学基础研究计划(2020JQ-491)

Random drift analysis method of MEMS gyroscope based on EMD

LI Wenhua, WANG Lixin, SHEN Qiang, LI Cheng   

  1. College of Missile Engineering, Rocket Force Engineering University, Xi'an 710025, China
  • Received:2020-12-07 Published:2021-10-09
  • Supported by:
    Natural Science Basic Research Program of Shaanxi (2020JQ-491)

摘要: 为了抑制微机械电子系统(MEMS)陀螺仪的随机漂移,基于经验模态分解(EMD)和模态集合选择标准,结合时间序列建模滤波法,提出了一种改进的MEMS陀螺仪随机漂移分析方法。首先,通过EMD将MEMS陀螺仪原始数据分解为多个本征模态函数(IMF),利用模态集合选择标准将IMF分为噪声IMF、噪声与信号混合IMF和信号IMF三类;然后,对混合IMF进行重构、时间序列建模及自适应卡尔曼滤波(AKF);最后,将3类信号重构,实现MEMS陀螺仪信号去噪。实验表明:所提方法有更好的去噪效果和实时性,提高了MEMS陀螺仪的使用精度。

关键词: 微机械电子系统(MEMS)陀螺仪, 自适应卡尔曼滤波(AKF), 时间序列模型, Allan方差, 经验模态分解(EMD)

Abstract: In order to reduce the random drift of Micro-Electro-Mechanical System (MEMS) gyroscope, an improved random drift analysis method of MEMS gyroscope is proposed, based on an improved Empirical Mode Decomposition (EMD) and a mode set selection criterion, combined with the method of time series model and filter. The original data of MEMS gyroscope was decomposed into several Intrinsic Mode Functions (IMFs) by EMD, and IMFs were divided into noise IMFs, mixed IMFs and signal IMFs by using the mode set selection criterion. The mixed IMFs were reconstructed, the time series model of the mixed IMFs after reconstruction was formulated, and Adaptive Kalman Filter (AKF) after modeling was finished. The denoised signal is obtained by reconstruction of three types of signal. Experimental result shows that the proposed method has better denoising effect and real-time performance, which greatly improves the using precision of MEMS gyroscope.

Key words: Micro-Electro-Mechanical System (MEMS) gyroscope, Adaptive Kalman Filter (AKF), time series model, Allan variance, Empirical Mode Decomposition (EMD)

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发