留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属蜗杆与塑料斜齿轮不等齿距啮合方法

任继华 石照耀 王得峰 余石鹏

任继华, 石照耀, 王得峰, 等 . 金属蜗杆与塑料斜齿轮不等齿距啮合方法[J]. 北京航空航天大学学报, 2022, 48(6): 979-985. doi: 10.13700/j.bh.1001-5965.2020.0690
引用本文: 任继华, 石照耀, 王得峰, 等 . 金属蜗杆与塑料斜齿轮不等齿距啮合方法[J]. 北京航空航天大学学报, 2022, 48(6): 979-985. doi: 10.13700/j.bh.1001-5965.2020.0690
REN Jihua, SHI Zhaoyao, WANG Defeng, et al. Method of unequal pitch meshing of metal worm and plastic helical gear[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 979-985. doi: 10.13700/j.bh.1001-5965.2020.0690(in Chinese)
Citation: REN Jihua, SHI Zhaoyao, WANG Defeng, et al. Method of unequal pitch meshing of metal worm and plastic helical gear[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 979-985. doi: 10.13700/j.bh.1001-5965.2020.0690(in Chinese)

金属蜗杆与塑料斜齿轮不等齿距啮合方法

doi: 10.13700/j.bh.1001-5965.2020.0690
基金项目: 

国家自然科学基金重点项目 51635001

详细信息
    通讯作者:

    石照耀, E-mail: shizhaoyao@bjut.edu.cn

  • 中图分类号: TH132.4;TH124;TH112.3

Method of unequal pitch meshing of metal worm and plastic helical gear

Funds: 

Key Program of National Natural Science Foundation of China 51635001

More Information
  • 摘要:

    为了进一步提高金属蜗杆与塑料斜齿轮传动中塑料齿轮的承载能力,研究了传统等齿距蜗杆与斜齿轮啮合传动时受力的特点,提出了蜗杆与斜齿轮不等齿距啮合方法。基于梁弯曲理论和轮齿变形理论,得到了齿面载荷、变形及接触刚度的关系,并以轮齿齿根弯曲变形率相等为前提,推导了不等齿距啮合的设计方法,得到了不等齿距啮合时蜗杆的齿距调整量,通过静态强度实验进行了验证。实验结果表明:不等齿距设计可以使塑料斜齿轮的承载能力提高13.69%。

     

  • 图 1  等齿距啮合

    Figure 1.  Equal pitch meshing

    图 2  不等齿距啮合

    Figure 2.  Unequal pitch meshing

    图 3  齿轮轮齿参数

    Figure 3.  Gear tooth parameters

    图 4  两种齿距蜗杆样板

    Figure 4.  Worm model with two pitches

    图 5  正常齿距塑料齿轮样板

    Figure 5.  Plastic gears model with normal pitch

    图 6  蜗杆齿距测量(齿距为3.19 mm)

    Figure 6.  Worm pitch measurement (tooth pitch is 3.19 mm)

    图 7  蜗杆齿距测量(齿距为3.13 mm)

    Figure 7.  Worm pitch measurement (tooth pitch is 3.13 mm)

    图 8  测试工作台

    Figure 8.  Test fixture

    图 9  力学性能仪

    Figure 9.  Mechanical properties meter

    图 10  等齿距啮合实验结果曲线

    Figure 10.  Curve of results of equal pitch meshing experiment

    图 11  不等齿距啮合实验结果曲线

    Figure 11.  Curve of results of unequal pitch meshing experiment

    表  1  式(7)~式(10)中符号及意义

    Table  1.   Symbols and meanings in formula (7)-(10)

    参数 含义
    B/mm 齿宽
    E/Pa 弹性模量
    Fi/N 每齿法向载荷
    Sk/mm 齿顶厚
    w/mm 悬臂梁长度
    Sm/mm 载荷作用线与齿根圆之间的距离
    SF/mm 危险截面宽度
    z/mm 危险截面与齿根圆之间的距离
    n/mm 全齿高
    α/(°) 加载角
    δB/mm 轮齿接触点弹性弯曲挠度
    δS/mm 轮齿剪切变形
    δg/mm 轮齿基体偏移量
    δp/mm 赫兹接触压力产生的变形
    δ/mm 轮齿总挠度
    ν 泊松比
    ρ1, ρ2/mm 蜗杆斜齿轮的曲率半径
    下载: 导出CSV

    表  2  实验样板参数

    Table  2.   Experimental model parameters

    参数 等齿距蜗杆 不等齿距蜗杆 塑料斜齿轮
    法向模数 1 0.985 1
    法向压力角/(°) 12 12 12
    螺旋角/旋向 9°9′44″(左) 9°9′44″(左) 9°9′44″(左)
    齿数 1 1 63
    轴向齿距/mm 3.182 2 3.134 5 3.182 2
    齿顶圆直径/mm 7.9 7.9 65.35
    齿根圆直径/mm 4.36 4.36 61.9
    下载: 导出CSV
  • [1] 云永琥, 胡泓, 塔静宁. 塑料斜齿轮与钢制蜗杆啮合力变化规律的研究[J]. 机械传动, 2018, 42(11): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201811005.htm

    YUN Y H, HU H, TA J N. Research of the variation of meshing force of the plastic helical gear and steel worm[J]. Journal of Mechanical Transmission, 2018, 42(11): 27-32(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201811005.htm
    [2] 欧阳志喜, 石照耀. 塑料齿轮设计与制造[M]. 北京: 化学工业出版社, 2011: 343-350.

    OUYANG Z X, SHI Z Y. Design and manufacturing of plastic gears[M]. Beijing: Chemical Industry Press, 2011: 343-350(in Chinese).
    [3] LETZELTER E, VAUJANY J P. Quasi static load sharing model in the case of nylon 6/6 cylindrical gears[J]. Materials & Design, 2009, 30(10): 4360-4368.
    [4] 姜碧琼, 任重义, 段建中. 双圆弧齿轮啮合点载荷分配研究[J]. 机械传动, 2017, 41(4): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201704013.htm

    JIANG B Q, REN Z Y, DUAN J Z. Research of the load distribution at the meshing point of double circular arc gear[J]. Journal of Mechanical Transmission, 2017, 41(4): 58-61(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201704013.htm
    [5] 符双学, 周长江, 韩旭. 典型工况下啮合齿间有效载荷分布及齿轮强度分析[J]. 机械传动, 2016, 40(8): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201608023.htm

    FU S X, ZHOU C J, HAN X. Payload distribution and gear strength analysis of gear meshing process under the typical contact condition[J]. Journal of Mechanical Transmission, 2016, 40(8): 102-106(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201608023.htm
    [6] 王博. 塑料斜齿轮钢制蜗杆传动强度与传动性能研究[D]. 长春: 吉林大学, 2016: 56-58.

    WANG B. Transmission strength and performance study of plastic helical gear and steel worm drive[D]. Changchun: Jilin University, 2016: 56-58(in Chinese).
    [7] 孙训方. 材料力学[M]. 5版. 北京: 科学出版社, 2009: 205-210.

    SUN X F. Mechanics of materials[M]. 5th ed. Beijing: Science Press, 2009: 205-210(in Chinese).
    [8] 刘鸿文. 材料力学[M]. 5版. 北京: 高等教育出版社, 2011: 286-290.

    LIU H W. Mechanics of materials[M]. 5th ed. Beijing: Higher Education Press, 2011: 286-290(in Chinese).
    [9] ELKHOLY A H. Tooth load sharing in high-contact ratio spur gears[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107(1): 11-16. doi: 10.1115/1.3258674
    [10] FALAH A H, ELKHOLY A H. Load and stress analysis of cylindrical worm gearing using tooth slicing method[J]. Transactions of the Canadian Society for Mechanical Engineering, 2006, 30(1): 97-112. doi: 10.1139/tcsme-2006-0007
    [11] LITVIN F L, FUENTES A. Gear geometry and applied theory[M]. Cambridge: Cambridge University Press, 2004: 441-475.
    [12] SHIGLEY J A, MISCHKE C R, BUDYNAS R G. Mechanical engineering design[M]. 9th ed. New York: McGraw-Hill Inc, 2010: 721-780.
    [13] 郝一舒, 李磊. 基于COSMOS/Works的塑料斜齿轮与钢制蜗杆啮合特性研究[J]. 机械设计, 2007, 24(2): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200702018.htm

    HAO Y S, LI L. Research on the characteristics of engagement between plastic helical gear and steel worm based on COSMOS/Works[J]. Journal of Machine Design, 2007, 24(2): 56-59(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200702018.htm
    [14] 刘舸. 圆柱蜗杆斜齿轮传动的理论分析及试验研究[D]. 重庆: 重庆大学, 2004: 78.

    LIU G. Theoretical analysis and experimental investigation of an involute cylindrical worm-helical gear drive[D]. Chongqing: Chongqing University, 2004: 78(in Chinese).
    [15] 张生明. 论斜齿轮与蜗杆配合方法和工艺探析[J]. 中国医疗设备, 2009, 24(12): 24-26. doi: 10.3969/j.issn.1674-1633.2009.12.008

    ZHANG S M. Discussion on coordinated methods and technique of bevel wheel and worm[J]. Information of Medical Equipment, 2009, 24(12): 24-26(in Chinese). doi: 10.3969/j.issn.1674-1633.2009.12.008
    [16] 李磊. 塑料蜗轮与钢制蜗杆的啮合性能研究[D]. 上海: 同济大学, 2007: 83.

    LI L. Research of the gearing characteristics between plastic worm wheel and steel worm[D]. Shanghai: Tongji University, 2007: 83(in Chinese).
    [17] 魏敏, 魏勇. 汽车微电机中蜗杆斜齿轮啮合传动设计[J]. 装备制造技术, 2012(9): 49-51. doi: 10.3969/j.issn.1672-545X.2012.09.018

    WEI M, WEI Y. The design of worm and spiral gear meshing transmission in the automobile micro motors[J]. Manufacturing Technology, 2012(9): 49-51(in Chinese). doi: 10.3969/j.issn.1672-545X.2012.09.018
    [18] 鲍洪, 安琦. 渐开线直齿轮轮齿载荷及应力计算方法[J]. 华东理工大学学报(自然科学版), 2012, 38(1): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HLDX201201019.htm

    BAO H, AN Q. A method of calculating load and stress of involute spur gear[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2012, 38(1): 116-122(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLDX201201019.htm
    [19] HEINZ P B. Understanding right-angle gear backlash[J]. Hydrocarbon Processing, 2017, 1: 54.
    [20] 罗光汉. 基于Pro/E的斜齿齿轮副变位系数与侧隙的优化设计[J]. 制造业自动化, 2016, 38(2): 115-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY201602029.htm

    LUO G H. The optimization of modification coefficient and backlash of helical gear pairs based on Pro/E[J]. Manufacturing Automation, 2016, 38(2): 115-116(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY201602029.htm
    [21] 郝一舒, 岳滨楠. 塑料斜齿轮与钢制蜗杆的啮合理论分析[J]. 机械传动, 2009, 33(5): 9-11.

    HAO Y S, YUE B N. Analysis of the mesh theory between plastic helical gear and steel worm[J]. Journal of Mechanical Transmission, 2009, 33(5): 9-11(in Chinese).
    [22] 郝一舒, 马士涛. 塑料斜齿轮与钢制蜗杆传动的非线性边界分析[J]. 机械设计, 2008, 25(7): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200807016.htm

    HAO Y S, MA S T. Nonlinear boundary analysis of plastic helical gear and steel worm transmission[J]. Journal of Machine Design, 2008, 25(7): 45-48(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200807016.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  176
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 录用日期:  2020-12-31
  • 网络出版日期:  2022-06-20
  • 整期出版日期:  2022-06-20

目录

    /

    返回文章
    返回
    常见问答