留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于损伤力学的增材制造金属材料疲劳寿命预测

洪海铭 詹志新 王佳莹

洪海铭, 詹志新, 王佳莹等 . 基于损伤力学的增材制造金属材料疲劳寿命预测[J]. 北京航空航天大学学报, 2022, 48(6): 950-956. doi: 10.13700/j.bh.1001-5965.2020.0722
引用本文: 洪海铭, 詹志新, 王佳莹等 . 基于损伤力学的增材制造金属材料疲劳寿命预测[J]. 北京航空航天大学学报, 2022, 48(6): 950-956. doi: 10.13700/j.bh.1001-5965.2020.0722
HONG Haiming, ZHAN Zhixin, WANG Jiayinget al. Damage mechanics-based fatigue life prediction for additive manufacturing metal materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 950-956. doi: 10.13700/j.bh.1001-5965.2020.0722(in Chinese)
Citation: HONG Haiming, ZHAN Zhixin, WANG Jiayinget al. Damage mechanics-based fatigue life prediction for additive manufacturing metal materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 950-956. doi: 10.13700/j.bh.1001-5965.2020.0722(in Chinese)

基于损伤力学的增材制造金属材料疲劳寿命预测

doi: 10.13700/j.bh.1001-5965.2020.0722
详细信息
    通讯作者:

    詹志新, E-mail: zzxupc@163.com

  • 中图分类号: O346.2; V215.5

Damage mechanics-based fatigue life prediction for additive manufacturing metal materials

More Information
  • 摘要:

    增材制造(AM)技术发展迅速,广泛应用于航空航天领域合金构件的加工制造,而很多增材制造合金构件承受循环载荷,疲劳失效破坏十分普遍。通过建立考虑增材制造过程影响的疲劳损伤模型,计算了增材制造金属材料的疲劳寿命。给出了弹塑性本构模型和考虑增材制造过程参数的疲劳损伤模型,进而给出了疲劳寿命计算的有限元数值方法;对增材制造金属材料进行了疲劳寿命预测,预测值与试验值基本吻合,并从疲劳数据的分散性及增材制造金属材料内部的孔隙率2个方面分析了计算误差;讨论了体积能量密度比对增材制造金属材料疲劳性能的影响,并对结果进行了分析,为增材制造金属材料的疲劳损伤评定提供一种有效的方法。

     

  • 图 1  SS316L合金的疲劳寿命预测结果

    Figure 1.  Predicted fatigue lives for SS316L

    图 2  SS316L合金疲劳寿命的变化曲线

    Figure 2.  Variation curves of fatigue life for SS316L

    图 3  Ti6Al4V合金的疲劳寿命预测结果

    Figure 3.  Predicted fatigue lives for Ti6Al4V

    图 4  Ti6Al4V合金疲劳寿命的变化曲线

    Figure 4.  Variation curves of fatigue life for Ti6Al4V

    表  1  标定的2种材料参数

    Table  1.   Two kinds of calibrated material parameters

    材料 α β m n
    SS316L 0.84 2.46 52 164 0.001 8
    Ti6Al4V 0.9 2.89 70 405 0.004 26
    下载: 导出CSV
  • [1] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196. doi: 10.1016/j.compositesb.2018.02.012
    [2] BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal additive manufacturing in aerospace: A review[J]. Materials & Design, 2021, 209: 110008.
    [3] ZHANG M, SUN C N, ZHANG X, et al. Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters[J]. Materials Science and Engineering A, 2017, 703(4): 251-261.
    [4] ZHANG M, SUN C N, ZHANG X, et al. Elucidating the relations between monotonic and fatigue properties of laser powder bed fusion stainless steel 316L[J]. The Journal of the Minerals, Metals & Materials Society, 2018, 70(3): 390-395.
    [5] ZHANG M, SUN C N, ZHANG X, et al. Predictive models for fatigue property of laser powder bed fusion stainless steel 316L[J]. Materials & Design, 2018, 145: 42-54.
    [6] SPIERINGS A B, STARR T L, WEGENER K. Fatigue performance of additive manufactured metallic parts[J]. Rapid Prototyping Journal, 2013, 19(2): 88-94. doi: 10.1108/13552541311302932
    [7] KAHLIN M, ANSELL H, MOVERARE J J. Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces[J]. International Journal of Fatigue, 2017, 101: 51-60. doi: 10.1016/j.ijfatigue.2017.04.009
    [8] AKITA M, UEMATSU Y, KAKIUCHI T, et al. Defect-dominated fatigue behavior in type 630 stainless steel fabricated by selective laser melting[J]. Materials Science and Engineering A, 2016, 666(6): 19-26.
    [9] EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering A, 2014, 598(3): 327-337.
    [10] SANAEI N, FATEMI A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Progress in Materials Science, 2020, 117(4): 100724.
    [11] KASPEROVICH G, HAUBRICH J, GUSSONE J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting[J]. Materials & Design, 2016, 105: 160-170.
    [12] ZHANG B, LI Y, BAI Q. Defect formation mechanisms in selective laser melting: A review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 515-527. doi: 10.1007/s10033-017-0121-5
    [13] 陈迪, 王燎, 高海燕, 等. 3D打印钛合金内部孔洞的研究进展[J]. 应用激光, 2019, 39(1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201901011.htm

    CHEN D, WANG L, GAO H Y, et al. Research progress on 3D printing internal cavity of titanium alloy[J]. Applied Laser, 2019, 39(1): 72-78(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201901011.htm
    [14] TONELLI L, LIVERANI E, VALLI G, et al. Effects of powders and process parameters on density and hardness of A357 aluminum alloy fabricated by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(1-2): 371-383. doi: 10.1007/s00170-019-04641-x
    [15] YAN W, GE W, QIAN Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia, 2017, 134(8): 324-333.
    [16] 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社. 2003: 20-25.

    YAO W X. Fatigue life analysis of structures[M]. Beijing: National Defense Industry Press, 2003: 20-25(in Chinese).
    [17] ZHU S P, LIAO D, LIU Q, et al. Nonlinear fatigue damage accumulation: Isodamage curve-based model and life prediction aspects[J]. International Journal of Fatigue, 2019, 128: 105185. doi: 10.1016/j.ijfatigue.2019.105185
    [18] BENKABOUCHE S, GUECHICHI H, AMROUCHE A, et al. A modified nonlinear fatigue damage accumulation model under multiaxial variable amplitude loading[J]. International Journal of Mechanical Sciences, 2015, 100: 180-194. doi: 10.1016/j.ijmecsci.2015.06.016
    [19] YUAN H, ZHANG L, MA S. Damage evolution and characterization for sintered powder metals with the varying porosity[J]. Engineering Fracture Mechanics, 2019, 207: 86-98. doi: 10.1016/j.engfracmech.2018.12.014
    [20] 郑战光, 蔡敢为, 李兆军. 一种新的疲劳损伤演化模型[J]. 工程力学, 2010, 27(2): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201002008.htm

    ZHENG Z G, CAI G W, LI Z J. A new model of fatigue damage evolution[J]. Engineering Mechanics, 2010, 27(2): 37-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201002008.htm
    [21] CHABOCHE J L, GALLERNEAU F. An overview of the damage approach of durability modelling at elevated temperature[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(6): 405-418.
    [22] LEMAITRE J. A course on damage mechanics[M]. Berlin: Springer, 2012: 1-20.
    [23] SHEN F, HU W, MENG Q. A non-local approach based on the hypothesis of damage dissipation potential equivalence to the effect of stress gradient in fretting fatigue[J]. International Journal of Fatigue, 2016, 90: 125-138. doi: 10.1016/j.ijfatigue.2016.04.028
    [24] LI P, WARNER D H, FATEMI A, et al. Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research[J]. International Journal of Fatigue, 2016, 85: 130-143. doi: 10.1016/j.ijfatigue.2015.12.003
    [25] LIU Q C, ELAMBASSERIL J, SUN S J, et al. The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting[J]. Advanced Materials Research, 2014, 891(3): 1519-1524.
    [26] VAN HOOREWEDER B, BOONEN R, MOENS D, et al. On the determination of fatigue properties of Ti6Al4V produced by selective laser melting: AIAA 2012-1733[R]. Reston: AIAA, 2012.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  145
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 录用日期:  2021-04-11
  • 网络出版日期:  2022-06-20
  • 整期出版日期:  2022-06-20

目录

    /

    返回文章
    返回
    常见问答