留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双射流环量控制翼型的控制力矩特性研究

何玉娟 雷玉昌 张登成 张艳华 周章文

何玉娟, 雷玉昌, 张登成, 等 . 双射流环量控制翼型的控制力矩特性研究[J]. 北京航空航天大学学报, 2021, 47(12): 2641-2649. doi: 10.13700/j.bh.1001-5965.2021.0080
引用本文: 何玉娟, 雷玉昌, 张登成, 等 . 双射流环量控制翼型的控制力矩特性研究[J]. 北京航空航天大学学报, 2021, 47(12): 2641-2649. doi: 10.13700/j.bh.1001-5965.2021.0080
HE Yujuan, LEI Yuchang, ZHANG Dengcheng, et al. Control moment characteristics of double-jet circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2641-2649. doi: 10.13700/j.bh.1001-5965.2021.0080(in Chinese)
Citation: HE Yujuan, LEI Yuchang, ZHANG Dengcheng, et al. Control moment characteristics of double-jet circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2641-2649. doi: 10.13700/j.bh.1001-5965.2021.0080(in Chinese)

双射流环量控制翼型的控制力矩特性研究

doi: 10.13700/j.bh.1001-5965.2021.0080
详细信息
    通讯作者:

    张登成, E-mail: dengcheng-zhang@163.com

  • 中图分类号: V221+.3

Control moment characteristics of double-jet circulation control airfoil

More Information
  • 摘要:

    为了探究环量控制技术在飞行控制性能方面的优势,在定常流场中对定常射流环量控制翼型的控制力矩作用机理展开了研究,采用数值仿真的方法,对比分析了单射流、双射流产生的虚拟舵面与传统舵面作用下的气动力系数的变化规律,并基于无舵面飞行器CCSCAOON对其气动力矩的控制特性进行了验证。验证结果表明:单射流作用下的虚拟舵面能够提供用于飞行器所需的滚转和俯仰力矩,且作用机理相似,控制性能优于传统舵面;无论是单射流还是双射流,在大迎角下虚拟舵面的气动控制特性较差,限制了环量控制的使用迎角;双射流较单射流而言,升阻比特性和控制力矩特性较好;双射流下的虚拟舵面通过调节下射流口动量系数,能够有效降低偏航力矩与滚转、俯仰力矩之间的耦合效应。

     

  • 图 1  CCSCAOON基本构型

    Figure 1.  Basic configuration of CCSCAOON

    图 2  CCSCAOON射流区域

    Figure 2.  CCSCAOON jet area

    图 3  CCSCAOON计算网格

    Figure 3.  CCSCAOON computing grids

    图 4  实验与仿真结果对比

    Figure 4.  Comparison of experimental and simulation results

    图 5  气动力、力矩的作用方向示意图

    Figure 5.  Schematic diagram of direction of aerodynamic force and torque

    图 6  单射流虚拟舵面与机械舵面气动特性曲线

    Figure 6.  Curve of aerodynamic characteristics of single-jet virtual rudder and mechanical rudder

    图 7  CCSCAOON的表面压力分布和流线图

    Figure 7.  Surface pressure distribution and streamlines of CCSCAOON

    图 8  不同工况下的气动力矩变化趋势

    Figure 8.  Variation trend of aerodynamic moment under different operating conditions

    图 9  LIO080和LIO082工况对应下的后缘流场和涡量图

    Figure 9.  Trailing-edge flow field and vorticity under LIO080 and LIO082 operating conditions

    表  1  不同工况下的射流动量系数

    Table  1.   Momentum coefficient of jet flow

    工况 射流动量系数
    LIO040 LIB/LOB: Cu up=0.04,Cu lw=0
    LIO060 LIB/LOB: Cu up=0.06,Cu lw=0
    LIO062 LIB/LOB: Cu up=0.06,Cu lw=0.02
    LIO080 LIB/LOB: Cu up=0.08,Cu lw=0
    LIO082 LIB/LOB: Cu up=0.08,Cu lw=0.02
    下载: 导出CSV
  • [1] 付志杰, 许和勇, 杜海, 等. 基于环量控制的虚拟舵面机翼气动特性计算研究[J]. 航空科学技术, 2020, 31(5): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005003.htm

    FU Z J, XU H Y, DU H, et al. Investigation on flapless wing based on circulation control[J]. Aeronautical Science and Technology, 2020, 31(5): 11-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005003.htm
    [2] 中国科学院. 新型飞行器中的关键力学问题[M]. 北京: 科学出版社, 2018: 88-94.

    Chinese Academy of Sciences. Key mechanical problems in new aircraft[M]. Beijing: Science Press, 2018: 88-94(in Chinese).
    [3] ENGLAR R J. Circulation control for high lift and drag generation on STOL aircraft[J]. Journal of Aircraft, 1975, 12(5): 457-463. doi: 10.2514/3.59824
    [4] JONES G S, JOSLIN R D. Applications of circulation control technology[M]. Reston: AIAA, 2006.
    [5] ENGLAR R J. Circulation control for high lift and drag generation on STOL aircraft[J]. Journal of Aircraft, 2015, 12(5): 457-463. doi: 10.2514/3.59824
    [6] ENGLAR R J. Circulation control pneumatic aerodynamics: Blown force and moment augmentation and modification-Past, present and future[C]//Fluids 2000 Conference and Exhibit. Reston: AIAA, 2000: 2541.
    [7] FIELDING J, LAWSON C, MARTINS-PIRES R, et al. Design, build and flight of the DEMON demonstrator UAV[C]//11th AIAA Aviation Technology, Integration and Operations (ATIO) Conference. Reston: AIAA, 2011: 6963.
    [8] FRITH S, WOOD N. Investigation of dual circulation control surfaces for flight control[C]//2nd AIAA Flow Control Conference. Reston: AIAA, 2004: 2211.
    [9] MILHOLEN W, JONES G, CHAN D. High-Reynolds number circulation control testing in the national transonic facility (invited)[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012: 103.
    [10] JONES G S, MILHOLEN W E, CHAN D T, et al. Development of the circulation control flow scheme used in the NTF semi-span FAST-MAC model[C]//31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013: 3048.
    [11] JONES G. Development of the dual aerodynamic nozzle model for the NTF semi-span model support system[C]//29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011: 3170.
    [12] LYNN K, RHEW R, JONES G, et al. High-Reynolds number active blowing semi-span force measurement system development[C]//28th Aerodynamic Measurement Technology, Ground Testing and Flight Testing Conference. Reston: AIAA, 2012: 3318.
    [13] JONES G S, MILHOLEN W E, CHAN D T, et al. A sweeping jet application on a high Reynolds number semi-span supercritical wing configuration[C]//35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017: 3044.
    [14] HUTCHIN C R. NATO AVT-239 task group: Control effectiveness and system sizing requirements for integration of fluidic flight controls on the SACCON aircraft configuration[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 280.
    [15] 张攀峰, 燕波, 戴晨峰. 合成射流环量控制翼型增升技术[J]. 中国科学: 技术科学, 2012, 42(9): 1046-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201209008.htm

    ZHANG P F, YAN B, DAI C F. Lift enhancement technology of airfoil controlled by synthetic jet circulation [J]. Scientia Sinica (Technologica), 2012, 42(9): 1046-1053(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201209008.htm
    [16] 张攀峰, 刘爱兵, 王晋军. 非定常等离子激励器诱导平板边界层的流动结构[J]. 中国科学: 技术科学, 2011, 41(4): 482-492. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201104010.htm

    ZHANG P F, LIU A B, WANG J J. Flow structure of plate boundary layer induced by unsteady equal ion exciter [J]. Scientia Sinica (Technologica), 2011, 41(4): 482-492(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201104010.htm
    [17] 张艳华, 李林, 张登成, 等. 基于等离子体环量控制的翼型气动特性[J]. 强激光与粒子束, 2017, 29(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201706012.htm

    ZHANG Y H, LI L, ZHANG D C, et al. Aerodynamics of airfoil based on plasma circulation control[J]. High Power Laser and Particle Beams, 2017, 29(6): 54-59(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201706012.htm
    [18] ZHANG Y H, ZHANG D C, LI L, et al. Experimental study on aerodynamic properties of circulation control airfoil with plasma jet[C]//Asia-Pacific International Symposium on Aerospace Technology. Berlin: Springer, 2018: 985-995.
    [19] 李林, 张艳华, 张登成, 等. 激励器位置影响环量控制翼型气动特性的实验研究[J]. 高电压技术, 2018, 44(12): 4061-4070. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201812037.htm

    LI L, ZHANG Y H, ZHANG D C, et al. Experimental study on effect of actuation position on circulation control airfoil aerodynamic characteristics[J]. High Voltage Engineering, 2018, 44(12): 4061-4070(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201812037.htm
    [20] 张艳华, 张登成, 胡孟权, 等. 环量控制对翼型气动特性的作用机理[J]. 空军工程大学学报(自然科学版), 2015, 16(1): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201501003.htm

    ZHANG Y H, ZHANG D C, HU M Q, et al. Study on aerodynamic mechanism of circulation control airfoil[J]. Journal of Air Force Engineering University (Natural Science Edition), 2015, 16(1): 10-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201501003.htm
    [21] 乔晨亮, 许和勇, 叶正寅. 钝后缘风力机翼型的环量控制研究[J]. 力学学报, 2019, 51(1): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901015.htm

    QIAO C L, XU H Y, YE Z Y. Circulation control on wind turbine airfoil with blunt trailing edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 135-145(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901015.htm
    [22] XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2017, 56(2): 554-570.
    [23] 齐万涛, 吕新波, 伍智敏. 环量控制技术在飞机纵向俯仰控制中的应用[J]. 飞行力学, 2019, 37(2): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201902016.htm

    QI W T, LYU X B, WU Z M. Application of circulation control technology on aircraft longitudinal pitch control[J]. Flight Dynamics, 2019, 37(2): 77-82(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201902016.htm
    [24] 张同任, 吕心悦, 徐悦, 等. 吹气射流飞控飞行器设计及试飞验证[J]. 航空科学技术, 2020, 31(5): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005008.htm

    ZHANG T R, LÜ X Y, XU Y, et al. Design and flight test verification of fluidic flight control aircraft[J]. Aeronautical Science and Technology, 2020, 31(5): 50-55(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005008.htm
    [25] 王海洋. 基于环量控制的无人飞行器气动特性研究与飞行试验[D]. 南京: 南京航空航天大学, 2014.

    WANG H Y. Research on aerodynamic characteristics and flight test of UAV based on circulation control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
    [26] SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134. http://www.onacademic.com/detail/journal_1000040913537810_f7b3.html
    [27] 孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 190-199. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202012013.htm

    SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 190-199(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202012013.htm
    [28] WARSOP C, CROWTHER W. NATO AVT-239 task group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 282.
    [29] JIRASEK A, CUMMINGS R M, SCHUETTE A, et al. The NATO STO AVT-201 task group on extended assessment of stability and control prediction methods for NATO air vehicles: Summary, conclusions and lessons learned[C]//32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014: 2394.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  67
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-19
  • 录用日期:  2021-03-29
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答