留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热障涂层的残余应力分析

李志华 李焕喜 徐惠彬 宫声凯

李志华, 李焕喜, 徐惠彬, 等 . 热障涂层的残余应力分析[J]. 北京航空航天大学学报, 2004, 30(03): 272-275.
引用本文: 李志华, 李焕喜, 徐惠彬, 等 . 热障涂层的残余应力分析[J]. 北京航空航天大学学报, 2004, 30(03): 272-275.
Li Zhihua, Li Huanxi, Xu Huibin, et al. Residual stress analysis of thermal barrier coatings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(03): 272-275. (in Chinese)
Citation: Li Zhihua, Li Huanxi, Xu Huibin, et al. Residual stress analysis of thermal barrier coatings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(03): 272-275. (in Chinese)

热障涂层的残余应力分析

详细信息
    作者简介:

    李志华(1971-),男,河北唐山人,硕士生, tslizhihua@tom.com.

  • 中图分类号: V 2542

Residual stress analysis of thermal barrier coatings

  • 摘要: 建立了热障涂层结构的残余应力计算公式,分析了陶瓷层和氧化层弹性模量、热膨胀系数及其厚度的变化对残余应力的影响.结果表明:陶瓷层和氧化层的面内残余应力均为压应力,其数值与温降成正比;自身弹性模量越高或热膨胀系数越小,陶瓷层或氧化层的残余应力越大;厚度变化对残余应力的影响很小;典型情况下陶瓷层的室温残余应力接近300 MPa,明显低于大块陶瓷材料的抗压强度.这些结果对分析热障涂层结构的失效机制有指导意义.

     

  • [1] Nissley D M. Thermal barrier coating life modeling in gas turbine engines. Thermal Barrier Coating Workshop. NASA Conference Publication 3312,1995. 265~281 [2]Bose S, DeMasi-Marcin J. Thermal barrier coating experience in gas turbine engine at Pratt & Whitney. Thermal Barrier Coating Workshop. NASA Conference Publication 3312, 1995. 63~77 [3]Tzimas E, Mullejans H, Peteves S D, et al. Failure of thermal barrier coating systems under cyclic thermomechanical loading[J]. Acta Mater, 2000,48:4699~4707 [4]Qian G, Nakamura T, Berndt C C. Effects of thermal gradient and residual stresses on thermal barrier coating fracture[J]. Mechanics of Materials,1998, 27:91~110 [5]Teixeira V, Andritschky M, Fischer W, et al. Analysis of residual stress in thermal barrier coatings[J]. Journal of Materials Processing Technology,1999, 92-93:209~216 [6]Thornton J, Cookson D, Pescott E. The measurement of strains within the bulk of aged and as-sprayed thermal barrier coatings using synchrotron radiation[J]. Surface and Coatings Technology,1999,120-121:96~102 [7]St ver D, Funke C. Direction of the development of thermal barrier coatings in energy applications[J]. Journal of Materials Processing Technology,1999, 92-93:195~202 [8]Hsueh C H, Jr Fuller E R. Analitical modeling of oxide thickness effects on residual stresses in thermal barrier coatings[J].Scripta Mater,2000,42:781~787 [9]Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science,2001, 46:505~553 [10] Teixeira V, Andritschky M, Fischer W, et al. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings[J]. Surface and Coatings Technology,1999,120-121:103~111 [11] (澳大利亚)斯温M V. 陶瓷的结构与性能[M].郭景坤等译. 北京:科学出版社,1998. 309 (Australia) Swain M V. Structure and properties of ceramics[M]. Translated by Guo Jingkun, et al. Beijing:Science Press,1998.309(in Chinese) [12] 杜庆华.工程力学手册[M]. 北京:高等教育出版社,1994. 1374 Du Qinghua. Engineering mechanics handbook[M]. Beijing:Higher Education Press,1994.1374(in Chinese) [13] Meier S M, Nissley D M, Sheffler K D, et al. Thermal barrier coating life prediction model development[J]. Journal of Engineering for Gas Turbines and Power,1992,114(4):258~263
  • 加载中
计量
  • 文章访问数:  3215
  • HTML全文浏览量:  90
  • PDF下载量:  1672
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-02-09
  • 网络出版日期:  2004-03-31

目录

    /

    返回文章
    返回
    常见问答