北京航空航天大学学报 ›› 2006, Vol. 32 ›› Issue (11): 1273-1276.

• 论文 • 上一篇    下一篇

月球探测器天文导航的遗传粒子滤波方法

房建成, 宁晓琳   

  1. 北京航空航天大学 仪器科学与光电工程学院, 北京 100083
  • 收稿日期:2006-04-30 出版日期:2006-11-30 发布日期:2010-09-19
  • 作者简介:房建成(1965-),男,山东临沂人,教授,fangjiancheng@buaa.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(60574086);新世纪优秀人才支持计划资助项目(NCET-04-0162)

Autonomous celestial navigation for lunar explorer based on genetic algorithm particle filter

Fang Jiancheng, Ning Xiaolin   

  1. School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2006-04-30 Online:2006-11-30 Published:2010-09-19

摘要: 天文导航系统是典型的非线性和噪声非高斯分布的系统.针对传统的扩展卡尔曼滤波不适于非线性和噪声非高斯分布的系统,和一般粒子滤波存在的粒子退化和采样枯竭问题,提出了一种基于遗传算法进行再采样的月球探测器自主天文导航粒子滤波新方法.计算机仿真结果显示了该方法可以有效的克服传统粒子滤波方法的缺点,提高天文导航系统的定位精度.

Abstract: Autonomous celestial navigation system is a typical nonlinear, non-Gaussian dynamic system. Extended Kalman filter (EKF) is widely used in spacecraft navigation. It only uses the first order terms in the Taylor series expansion. To nonlinear and non-Gaussian system, EKF may introduce large estimation error. Particle filter(PF) is a computer-based method for implementing a recursive Bayesian filter by Monte Carlo simulations. PF is an effective solution at dealing with nonlinear and/or non-Gaussian problems. The performance of PF relies on the choice of importance sampling density and resampling scheme. To overcome the particle degeneration and sample impoverishment problems existing in traditional particle filter method, a new autonomous celestial navigation method for lunar explorer based on genetic algorithm particle filter method is presented. Simulation results demonstrat the validity and feasibility of this new method.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发