Abstract:To calculate the integral sub-stiffened panel buckling load in the preliminary design stage quickly, a simplifying approximate calculation method based on some reasonable assumptions was proposed. The perfect rectangular sub-stiffened panel simply supported on four sizes was used as investigation object. This structure has 3 instability forms, and the corresponding buckling loads were obtained by using the traditional stiffened plate theory. The minimum buckling load of the 3 instability forms was regarded as the approximate buckling load of the integral sub-stiffened panel. The buckling linear perturbation step method of ABAQUS was used to calculate the two sets of finite element (FE) models respectively: one set was used to validate the accuracies of the theoretical formulas for failure modes, and the other set was integral sub-stiffened panel finite element models which were used to verify the applicability of proposed calculation method of sub-stiffened panel buckling load. Only two load cases were considered in the research above: the longitudinal compression load and the combination of compression and shear load. The results indicate that the theoretical approximate calculation method can calculate the buckling load of sub-stiffened panel, which count for engineering application to some extent.
Mulani S B, Slemp W C H,Kapania R K.EBF3PanelOpt:an optimization framework for curvilinear blade-stiffened panels[J].Thin-Walled Structures,2013,63:13-26.
[2]
Murphy A, Quinn D,Mawhinney P,et al.Tailoring static strength performance of metallic stiffened panels by selective local sub-stiffening[C]//Proceedings of the Forty Seventh AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston:AIAA,2006:1-4.
[3]
Farley G L. Selective reinforcement to enhance the structural performance of metallic compression panels[C]//45th AIAA/ASME/ASCE/AHS/ASCSDM Conference.Reston:AIAA,2004.
[4]
Bushnell D, Rankin C.Optimum design of stiffened panels with substiffeners[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston:AIAA,2005:1-54.
[5]
Watson A, Featherston C A,Kennedy D.Optimization of postbuckled stiffened panels with multiple stiffener sizes[C]//Proceedings of the Forty Eighth AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston: AIAA,2007:23-26.
[6]
Quinn D, Murphy A,Mcewan W,et al.Non-prismatic sub-stiffening for stiffened panel plates-stability behaviour and performance gains[J].Thin-Walled Structures,2010,48(6):401-413.
[7]
Quinn D, Murphy A,Mcewan W,et al.Stiffened panel stability behaviour and performance gains with plate prismatic sub-stiffening[J].Thin-Walled Structures,2009,47(12):1457-1468.
[8]
Özakça M, Murphy A,Van der Veen S.Buckling and post-buckling of sub-stiffened or locally tailored aluminium panels[C]//25th International Congress of the Aeronautical Sciences.Bonn:ICAS,2006:3-8.
[9]
Khvyiuzov A, Xu Y M.Initial buckling of compressed rectangular panels with variable stiffener sizes[J].Advanced Materials Research,2014,915:150-164.
[10]
王博,田阔, 郝鹏,等.多级加筋板结构承载性能与缺陷敏感度研究[J].固体火箭技术,2014,37(3):408-412. Wang B,Tian K,Hao P,et al.Load-carrying capacity and imperfection-sensitivity analysis of hierarchical stiffened panels[J].Journal of Solid Rocket Technology,2014,37(3):408-412(in Chinese).
[11]
肖明心. 板的稳定理论[M].1版.成都:四川科学技术出版社,1993:61-87. Xiao M X.Stability theory of plate[M].1st ed.Chengdu: Sichuan Science and Technology Press,1993:61-87(in Chinese).
[12]
Timoshenko S. Theory of elastic stability[M].2nd ed.Dover:Dover Publications Inc,2009:348-356.
[13]
Bleich F. Buckling strength of metal structures[M].New York:McGraw-Hill,1952:349-385.
[14]
Lynch C, Murphy A,Price M,et al.The computational post buckling analysis of fuselage stiffened panels loaded in compression[J].Thin-Walled Structures,2004,42(10):1445-1464.
[15]
Murphy A, Price M,Lynch C,et al.The computational post-buckling analysis of fuselage stiffened panels loaded in shear[J].Thin-Walled Structures,2005,43(9):1455-1474.