Structure design and motion mode analysis of a six wheel-legged robot
XU Kun1,2, ZHENG Yi1, DING Xilun1
1. School of Mechanical Engineering & Automation, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
Abstract:The research of hybrid locomotion robot has become one of the hottest spots of mobile robots. Wheel-legged robot which combines the advantages of wheeled robot and legged robot can be better adapted to complex environment. A new combination between wheels and legs is proposed and a new circumferential symmetry wheel-legged robot is designed. It can transit its locomotion mode by changing its configuration. Meanwhile, it reduces mechanism complication and avoids the fray of wheels while they are used as feet in legged motion mode. Because of its special structure, four typical "3+3" tripod gaits and the equivalent mechanisms in different walking gaits processes are presented and transition between them is analyzed. The forward and inverse kinematics models of single leg are built. Based on its structure, planning of motion mode transition from wheeled motion mode to legged motion mode and from legged motion mode to wheeled motion mode is given and simulated in software. Its wheeled motion mode and steering problem are analyzed and illustrated,and four steering models are built. Some tests with wheel-legged robot prototype are made to verify its ability of locomotion both in legged mode and wheeled mode and its capability of transition between different motion modes.
徐坤, 郑羿, 丁希仑. 六轮腿式机器人结构设计与运动模式分析[J]. 北京航空航天大学学报, 2016, 42(1): 59-71.
XU Kun, ZHENG Yi, DING Xilun. Structure design and motion mode analysis of a six wheel-legged robot. JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2016, 42(1): 59-71.
[1] 田娜,丁希仑,戴建生.一种新型的变结构轮腿式探测车机构设计与分析[J].机械设计与研究,2004,20(z1):268-270. TIAN N,DING X L,DAI J S.Design and analysis of a novel metamorphic wheel-legged rover mechanism[J].Journal of Machine Design and Research,2004,20(z1):268-270(in Chinese).
[2] PREUMONT A,ALEXANDRE P,GHUYS D.Gait analysis and implementation of a six leg walking machine[C]//5th International Conference on Advanced Robotics,Robots in Unstructured Environments,IEEE.Piscataway,NJ:IEEE Press,1991:941-945.
[3] CHU S K K,PANG G K H.Comparison between different model of hexapod robot in fault-tolerant gait[J].IEEE Transactions on Systems,Man,and Cybernetics,2002,32(6):752-756.
[4] 苏军,陈学东,田文罡.六足步行机器人全方位的步态研究[J].机械与电子,2004(3):48-52. SU J,CHEN X D,TIAN W G.A study of the omnidirectional gait for hexapod walking robot[J].Machinery & Electronics,2004(3):48-52(in Chinese).
[5] 韩宝玲,王秋丽,罗庆生.六足仿生步行机器人足端工作空间和灵活度研究[J].机械设计与研究,2006,22(4):10-12. HAN B L,WANG Q L,LUO Q S.Mechanical optimization and analyses of hexapod walking bio-robot[J].Machine Design and Research,2006,22(4):10-12(in Chinese).
[6] 丁希仑,王志英,ROVETTA A.六边形对称分布六腿机器人的典型步态及运动性能分析[J].机器人,2010,32(6):759-765. DING X L,WANG Z Y,ROVETTA A.Typical gaits and motion analysis of a hexagonal symmetrical hexapod robot[J].Robot,2010,32(6):759-765(in Chinese).
[7] 徐坤,丁希仑,李可佳.圆周对称分布六腿机器人三种典型行走步态步长及稳定性分析[J].机器人,2012,34(2):231-241. XU K,DING X L,LI K J.Stride size and stability analysis of a radially symmetrical hexapod robot in three typical gaits[J].Robot,2012,34(2):231-241(in Chinese).
[8] SHNRO N,EIJI N,TAKAYUKI T.Motion control technique for practical use of a leg-wheel robot on unknown outdoor rough terrains[C]//Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,IEEE.Piscataway,NJ:IEEE Press,2004:1353-1358.
[9] YLONEN S J,HALME A J.Workpartner-Centaur like service robot[C]//Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems,IEEE.Piscataway,NJ:IEEE Press,2002:727-732.
[10] WILCOX B H.ATHLETE:An option for mobile lunar landers[C]//2008 IEEE Aerospace Conference,IEEE.Piscataway,NJ:IEEE Press,2008:1-8.
[11] WANG P F,HUANG B,SUN L N.Walking research on multi motion mode quadruped bionic robot based on moving ZMP[C]//IEEE International Conference on Mechatronics and Automation,IEEE.Piscataway,NJ:IEEE Press,2005:1935-1940.
[12] 丁希仑,徐坤.一种新型变结构轮腿式机器人的设计与分析[J].中南大学学报,2009,40(S1):91-101. DING X L,XU K.Design and analysis of a novel metamorphic wheel-legged rover mechanism[J].Journal of Central South University,2009,40(S1):91-101(in Chinese).
[13] JACOBSEN S,SMITH F M,OLIVIER M,et al.Reconfigurable articulated leg and wheel:US7017687B1[P].2006-03-28.
[14] ROHMER E,REINA G,YOSHIDA K.Dynamic simulation-based action planner for a reconfigurable hybrid legwheel planetary exploration rover[J].Advanced Robotics,2010,24(8-9):1219-1238.
[15] CRUSE H.What mechanisms coordinate leg movement in walking arthropods?[J].Trends in Neurosciences,1990,13(1):15-21.
[16] CRUSE H,WEHNER R.No need for a cognitive map:Decentralized memory for insect navigation[J].PLoS Computational Biology,2011,7(3):1-10.
[17] BENDER J A,SIMPSON E M,TIETZ B R,et al.Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis[J].The Journal of Experimental Biology,2011,214(12):2057-2064.