北京航空航天大学学报 ›› 2016, Vol. 42 ›› Issue (9): 1892-1902.doi: 10.13700/j.bh.1001-5965.2015.0582

• 论文 • 上一篇    下一篇

基于张量分解的动态Web服务推荐

张万才, 刘旭东, 郭晓辉   

  1. 北京航空航天大学 计算机学院, 北京 100083
  • 收稿日期:2015-09-08 出版日期:2016-09-20 发布日期:2016-03-24
  • 通讯作者: 刘旭东,Tel.:010-82316285,E-mail:liuxd@act.buaa.edu.cn E-mail:liuxd@act.buaa.edu.cn
  • 作者简介:刘旭东,男,博士,教授,博士生导师。主要研究方向:服务计算、云计算。Tel.:010-82316285,E-mail:liuxd@act.buaa.edu.cn;张万才,男,博士研究生。主要研究方向:服务计算。E-mail:zhangwc@act.buaa.edu.cn
  • 基金资助:
    国家自然科学基金(61370057);国家“863”计划(2012AA011203);国家“973”计划(2014CB340304)

Dynamic Web service recommendation based on tensor factorization

ZHANG Wancai, LIU Xudong, GUO Xiaohui   

  1. School of Computer Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2015-09-08 Online:2016-09-20 Published:2016-03-24
  • Supported by:
    National Natural Science Foundation of China (61370057); National High Technology Research and Development Program of China (2012AA011203); National Key Basic Research Program of China (2014CB340304)

摘要: 在服务计算领域中,为了能够在大量具有相同功能的Web服务以及API等数据资源中选择适合用户的服务和接口,提出了服务推荐系统。当前常用的基于服务质量(QoS)的服务推荐系统所采用的模型假定服务的QoS值恒定不变,是一种由服务和用户的二元关系构成的二维静态模型。针对实际应用中,QoS是受到多种因素影响的变量这一问题,提出了一种可以描述多个影响QoS因素的张量模型,并利用张量分解算法来对服务推荐算法进行了改进。实验结果表明:提出的基于张量分解的服务推荐算法与6种现有算法相比较,预测服务的QoS值的绝对平均误差(MAE)不同程度地降低了20%~50%,并且所建模型能够描述更多的影响因素,从而可对服务进行动态推荐。

关键词: 服务计算, 服务质量, 推荐系统, 协同过滤, 张量分解

Abstract: In the area of Web service computing, in order to select a suitable service for users in a large number of Web services and API with the identical function,the issue of Web service recommendation is becoming more and more critical. At present, in the quality of service (QoS) based service recommendation systems, the hypothesis of the system model is a two-dimensional static model which is composed of dyadic relationship between users and service interaction. However, in view of the practical application, the QoS value is affected by many factors, and a tensor model is proposed to describe the factors which affect the QoS. Then, we propose a method to discover the latent factors that govern the associations among these multi-type objects of QoS. A new recommendation approach based on tensor factorization is proposed to address the issue of Web service QoS value prediction with considering Web service invocation time. The experimental results show that compared with six related algorithms, the mean absolute error (MAE) of the proposed tensor factorization algorithm is reduced by 20%-50%, and our model can be used to describe more factors and to dynamically recommend Web service.

Key words: service computing, quality of service, recommendation systems, collaborative filtering, tensor factorization

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发