留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂电池相变材料/风冷综合热管理系统温升特性

施尚 余建祖 谢永奇 高红霞 李明

施尚, 余建祖, 谢永奇, 等 . 锂电池相变材料/风冷综合热管理系统温升特性[J]. 北京航空航天大学学报, 2017, 43(6): 1278-1286. doi: 10.13700/j.bh.1001-5965.2016.0831
引用本文: 施尚, 余建祖, 谢永奇, 等 . 锂电池相变材料/风冷综合热管理系统温升特性[J]. 北京航空航天大学学报, 2017, 43(6): 1278-1286. doi: 10.13700/j.bh.1001-5965.2016.0831
SHI Shang, YU Jianzu, XIE Yongqi, et al. Temperature rise characteristic of lithium battery integrated thermal management system combining phase change materials with air cooling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1278-1286. doi: 10.13700/j.bh.1001-5965.2016.0831(in Chinese)
Citation: SHI Shang, YU Jianzu, XIE Yongqi, et al. Temperature rise characteristic of lithium battery integrated thermal management system combining phase change materials with air cooling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1278-1286. doi: 10.13700/j.bh.1001-5965.2016.0831(in Chinese)

锂电池相变材料/风冷综合热管理系统温升特性

doi: 10.13700/j.bh.1001-5965.2016.0831
详细信息
    作者简介:

    施尚, 男, 博士研究生。主要研究方向:电池热管理系统设计

    余建祖, 男, 教授, 博士生导师。主要研究方向:强化传热、电子设备热设计

    通讯作者:

    余建祖, E-mail: yjz@buaa.edu.cn

  • 中图分类号: TK124

Temperature rise characteristic of lithium battery integrated thermal management system combining phase change materials with air cooling

More Information
  • 摘要:

    锂电池在高倍率充放电过程中会产生大量热量,此热量不及时散出会导致电池超温进而影响电池的使用寿命,甚至导致安全事故。本文设计了一种新型相变材料/风冷综合热管理系统(TMS),并对综合热管理方式下的电池温升特性进行了实验和理论研究。基于集总参数法,结合电池生热及散热机理,建立了电池发热功率计算模型以及相变材料/风冷综合TMS电池温度场数学模型,计算了电池单体发热功率,分析了环境温度、电池充放电循环初始温度、相变温度、对流热阻以及电池和相变材料之间的导热热阻对电池综合TMS性能的影响。结果表明:综合TMS的冷却性能优于纯风冷热管理系统;电池充放电过程为非稳态传热过程,因此较高的初始温度带来超温风险;电池温度场数学模型能准确反映电池升温行为;较高的环境温度下,电池最大温升幅度降低,但可能导致电池最高温度超过安全温度;相变材料的相变温度越低,电池最大温升越低;减小导热热阻及对流热阻能显著提高TMS性能。

     

  • 图 1  实验系统示意图

    Figure 1.  Schematic diagram of experimental system

    图 2  钛酸锂电池模组

    Figure 2.  Lithium titanate battery pack

    图 3  基于相变材料的综合热管理系统

    Figure 3.  Integrated thermal management system based on phase change material

    图 4  电加热器

    Figure 4.  Electric heater

    图 5  纯风冷热管理下电池最大温升

    Figure 5.  Maximum temperature rise of battery under thermal management of pure air cooling

    图 6  不同热管理系统下电池温度变化

    Figure 6.  Battery temperature change in different thermal management systems

    图 7  电池温降

    Figure 7.  Temperature drop of battery

    图 8  电池发热功率变化曲线

    Figure 8.  Changing curves of battery heat generation power

    图 9  电池温升模型计算结果与实验结果对比

    Figure 9.  Comparison of battery temperature rise betweenmodel calculation results and experimental results

    图 10  不同初始温度下电池温度变化

    Figure 10.  Battery temperature change at different initial temperatures

    图 11  不同热阻下电池温度变化

    Figure 11.  Battery temperature change atdifferent thermal resistance

    图 12  不同TD下电池温度变化

    Figure 12.  Battery temperature change at different TD

    图 13  环境温度对电池温升和温度的影响

    Figure 13.  Influence of ambient temperature on battery temperature rise and temperature

    表  1  钛酸锂电池参数

    Table  1.   Parameters of lithium titanate battery

    参数数值
    尺寸/(mm×mm×mm)6.1×203×127
    质量/g285
    标称电压/V2.3
    额定容量/(A·h)10
    推荐使用温度范围/℃充电-10~+45
    放电-25~+55
    导热系数/(W·(m·K)-1)5.22
    下载: 导出CSV
  • [1] 欧阳陈志, 梁波, 刘燕平, 等.锂离子动力电池热安全性研究进展[J].电源技术, 2014, 38(2):382-385. http://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201402070.htm

    OUYANG C Z, LIANG B, LIU Y P, et al.Progress of thermal safety characteristics of high power lithium-ion batteries[J].Chinese Journal of Power Sources, 2014, 38(2):382-385(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201402070.htm
    [2] 王宏伟, 邓爽, 肖海清, 等.国内电动车用动力锂离子电池现状[J].电子元件与材料, 2012, 31(6):84-86. http://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201206030.htm

    WANG H W, DENG S, XIAO H Q, et al.Review on domestic power Li-ion battery[J].Electronic Components and Materials, 2012, 31(6):84-86(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201206030.htm
    [3] 唐致远, 管道安, 张娜, 等.锂离子动力电池的安全性研究进展[J].化工进展, 2005, 24(10):1098-1102. doi: 10.3321/j.issn:1000-6613.2005.10.006

    TANG Z Y, GUAN D A, ZHANG N, et al.Research on safety characteristics of high power lithium-ion batteries[J].Chemical Industry and Engineering Progress, 2005, 24(10):1098-1102(in Chinese). doi: 10.3321/j.issn:1000-6613.2005.10.006
    [4] BIENSAN P, SIMON B, PÉRÈS J P, et al.On safety of lithium-ion cells[J].Journal of Power Sources, 1999, 81-82(99):906-912. http://linkinghub.elsevier.com/retrieve/pii/S0378775399001354
    [5] 侯永涛, 赛羊羊, 孟令斐, 等.纯电动汽车锂离子电池热效应的建模及仿真[J].电源技术, 2016, 40(6):1185-1188. http://cdmd.cnki.com.cn/Article/CDMD-10611-1013044254.htm

    HOU Y T, SAI Y Y, MENG L F, et al.Modeling and simulation of thermal effects of lithium-ion battery for electric vehicles[J].Chinese Journal of Power Sources, 2016, 40(6):1185-1188(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10611-1013044254.htm
    [6] SABBAH R, KIZILEL R, SELMAN J R, et al.Active (air-cooled) vs.passive (phase change material) thermal management of high power lithium-ion packs:Limitation of temperature rise and uniformity of temperature distribution[J].Journal of Power Sources, 2008, 182(2):630-638. doi: 10.1016/j.jpowsour.2008.03.082
    [7] 张国庆, 张海燕.相变储能材料在电池热管理系统中的应用研究进展[J].材料导报, 2006, 20(8):9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200608003.htm

    ZHANG G Q, ZHANG H Y.Progress in application of phase change materials in battery module thermal management system[J].Materials Review, 2006, 20(8):9-12(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200608003.htm
    [8] HALLAJ S A, SELMAN J R.A novel thermal management system for electric vehicle batteries using phase-change material[J].Journal of the Electrochemical Society, 2000, 147(9):3231-3236. doi: 10.1149/1.1393888
    [9] RAO Z H, WANG S F, ZHANG Y L.Simulation of heat dissipation with phase change material for cylindrical power battery[J].Journal of the Energy Institute, 2016, 85(1):38-43. doi: 10.1179/1743967111Z.0000000008?scroll=top&needAccess=true
    [10] KHATEEB S A, AMIRUDDIN S, FARID M, et al.Thermal management of Li-ion battery with phase change material for electric scooters:Experimental validation[J].Journal of Power Sources, 2005, 142(1):345-353. https://wiki.aalto.fi/download/attachments/91692283/thermal_management_of_li-ion_battery_with_pcm_for_electrics_scooters.pdf?version=1&modificationDate=1398448132566&api=v2
    [11] LING Z, WANG F, FANG X, et al.A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J].Applied Energy, 2015, 148:403-409. doi: 10.1016/j.apenergy.2015.03.080
    [12] HUANG Q, YAN M, JIANG Z.Thermal study on single electrodes in lithium-ion battery[J].Journal of Power Sources, 2006, 156(2):541-546. doi: 10.1016/j.jpowsour.2005.05.083
    [13] ONDA K, OHSHIMA T, NAKAYAMA M, et al.Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J].Journal of Power Sources, 2006, 158(1):535-542. doi: 10.1016/j.jpowsour.2005.08.049
    [14] 刘恒伟, 李建军, 谢潇怡, 等.加速量热仪在锂离子电池热测试中的应用[J].集成技术, 2015, 4(1):51-59. http://www.cnki.com.cn/Article/CJFDTOTAL-JCJI201501007.htm

    LIU H W, LI J J, XIE X Y, et al.Application of accelerating rate calorimeter in the lithium-ion battery thermal test[J].Journal of Integration Technology, 2015, 4(1):51-59(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JCJI201501007.htm
    [15] BERNARDI D, PAWLIKOWSKI E, NEWMAN J.A general energy balance for battery systems[J].Journal of the Electrochemical Society, 1984, 132(1):5-12. http://jes.ecsdl.org/content/132/1/5.abstract?cited-by=yesl132/1/5r132/1/5
    [16] DONG H J, BAEK S M.Thermal modeling of cylindrical lithium ion battery during discharge cycle[J].Energy Conversion & Management, 2011, 52(8):2973-2981. https://www.researchgate.net/publication/251532890_Thermal_modeling_of_cylindrical_lithium_ion_battery_during_discharge_cycle/reviews/22712
    [17] FORGEZ C, DO D V, FRIEDRICH G, et al.Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J].Journal of Power Sources, 2010, 195(9):2961-2968. doi: 10.1016/j.jpowsour.2009.10.105
    [18] 林成涛, 王军平, 陈全世.电动汽车SOC估计方法原理与应用[J].电池, 2004, 34(5):376-378. http://www.cnki.com.cn/Article/CJFDTOTAL-DACI200405027.htm

    LIN C T, WANG J P, CHEN Q S.Methods for state of charge estimation of EV batteries and their application[J].Battery Bimonthly, 2004, 34(5):376-378(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DACI200405027.htm
    [19] 何志超, 杨耕, 卢兰光, 等.基于恒流外特性和SOC的电池直流内阻测试方法[J].清华大学学报(自然科学版), 2015, 55(5):532-537. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201505009.htm

    HE Z C, YANG G, LU L G, et al.Battery DC internal resistance test method based on the constant current external characteristics and SOC[J].Journal of Tsinghua University (Science and Technology), 2015, 55(5):532-537(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201505009.htm
    [20] 高明, 张宁, 王世学, 等.翅片式锂电池热管理系统散热性能的实验研究[J].化工进展, 2016, 35(4):1068-1073. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201604016.htm

    GAO M, ZHANG N, WANG S X, et al.Experiment on heat dispersion of finned lithium battery thermal management system[J].Chemical Industry and Engineering Progress, 2016, 35(4):1068-1073(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201604016.htm
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  784
  • HTML全文浏览量:  14
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-27
  • 录用日期:  2016-11-25
  • 网络出版日期:  2017-06-20

目录

    /

    返回文章
    返回
    常见问答