留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带旋转孔容腔瞬态演化与建模方法研究

丁水汀 蒲俊宇 邱天 于航

丁水汀, 蒲俊宇, 邱天, 等 . 带旋转孔容腔瞬态演化与建模方法研究[J]. 北京航空航天大学学报, 2017, 43(9): 1721-1731. doi: 10.13700/j.bh.1001-5965.2016.0689
引用本文: 丁水汀, 蒲俊宇, 邱天, 等 . 带旋转孔容腔瞬态演化与建模方法研究[J]. 北京航空航天大学学报, 2017, 43(9): 1721-1731. doi: 10.13700/j.bh.1001-5965.2016.0689
DING Shuiting, PU Junyu, QIU Tian, et al. Research on transient evolvement and modeling method of cavity with rotating orifices[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1721-1731. doi: 10.13700/j.bh.1001-5965.2016.0689(in Chinese)
Citation: DING Shuiting, PU Junyu, QIU Tian, et al. Research on transient evolvement and modeling method of cavity with rotating orifices[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1721-1731. doi: 10.13700/j.bh.1001-5965.2016.0689(in Chinese)

带旋转孔容腔瞬态演化与建模方法研究

doi: 10.13700/j.bh.1001-5965.2016.0689
基金项目: 

航空发动机复杂系统安全性教育部长江学者创新团队 IRT0905

中国博士后科学基金 2016M591047

详细信息
    作者简介:

    丁水汀   男, 博士, 教授, 博士生导师; 主要研究方向:燃气轮机热端旋转部件流动与换热机理、航空发动机适航性设计与验证技术

    蒲俊宇   男, 硕士研究生; 主要研究方向:航空发动机瞬态空气系统网络

    邱天   男, 博士; 主要研究方向:航空发动机总体和空气系统瞬态分析、航空发动机安全性设计和验证技术

    于航   男, 博士研究生; 主要研究方向:航空发动机瞬态空气系统网络

    通讯作者:

    邱天, E-mail:qiutian@buaa.edu.cn

  • 中图分类号: V233.5

Research on transient evolvement and modeling method of cavity with rotating orifices

Funds: 

Innovation Plan of Aero Engine Complex System Safety by the Ministry of Education Chang Jiang Scholars of China IRT0905

China Postdoctoral Science Foundation 2016M591047

More Information
  • 摘要:

    旋转孔与腔组成的孔腔系统为航空发动机空气系统的重要组成部分,其瞬态响应过程可能诱发短时危险过渡态载荷。为研究旋转孔腔的瞬态演化规律,以旋转孔前的容腔为研究重点,建立了带旋转孔的容腔CFD计算模型,分析了孔腔系统的瞬态演化过程,并基于旋转孔的稳态流动特性建立了带旋转孔容腔的瞬态1-D模型,对瞬态演化过程进行了仿真。通过对比瞬态1-D模型的结果和CFD结果,发现采用前者能基本模拟容腔的瞬态演化过程,基本满足工程需要,并完成了瞬态1-D模型结果产生偏差的原因分析。

     

  • 图 1  CFD计算模型几何结构示意图

    Figure 1.  Schematic diagram of geometric structure of CFD model

    图 2  网格划分示意图

    Figure 2.  Schematic diagram of mesh generation

    图 3  网格无关性验证

    Figure 3.  Grid independence verification

    图 4  CFD计算模型与Dittmann等[7]试验流量系数结果对比

    Figure 4.  Comparison of discharge coefficient between CFD model and test of Dittmann[7]

    图 5  稳态工况流量系数结果与拟合

    Figure 5.  Discharge coefficient results and fitting under steady working condition

    图 6  瞬态工况压比随时间变化

    Figure 6.  Change of pressure ratio with time under transient working condition

    图 7  瞬态工况腔内平均总压结果

    Figure 7.  Average total pressure results in cavity under transient working condition

    图 8  瞬态工况进口流量结果

    Figure 8.  Inlet flow rate results under transient working condition

    图 9  瞬态工况出口流量结果

    Figure 9.  Outlet flow rate results under transient working condition

    图 10  瞬态工况腔内平均总温结果

    Figure 10.  Average total temperature results in cavity under transient working condition

    图 11  稳态工况下腔内总温分布云图

    Figure 11.  Distribution contour of total temperature in cavity under steady working condition

    图 12  瞬态与稳态工况下流量系数对比

    Figure 12.  Comparison of discharge coefficient under transient and steady working conditions

    图 13  稳态工况下腔内角速度云图

    Figure 13.  Contour of angular velocity in cavity under steady working condition

    图 14  斜坡工况下腔内角速度演化过程

    Figure 14.  Evolvement of angular velocity in cavity under slope working condition

    图 15  斜坡工况下0.007 s时刻腔内径向速度云图

    Figure 15.  Contour of radial velocity in cavity at 0.007 s under slope working condition

    图 16  斜坡工况下孔前截面角速度演化

    Figure 16.  Evolvement of angular velocity in cross section in front of orifice under slope working condition

    图 17  斜坡工况下腔内总温分布云图

    Figure 17.  Distribution contour of total temperature in cavity under slope working condition

    图 18  斜坡工况下腔内总温与孔进口总温对比

    Figure 18.  Comparison of total temperature between cavity and inlet of orifice under slope working condition

    图 19  光滑工况下进出口流量误差变化

    Figure 19.  Variation of inlet and outlet flow rate errors under smooth working condition

    图 20  不同分辨率下光滑工况的出口流量误差

    Figure 20.  Outlet flow rate errors under smooth working condition with different resolution

  • [1] PRICE B, DEMERS L, LEBEL J F, et al.Enhancements to the load acceptance and rejection capability of a high pressure aeroderivative engine[C]//Proceedings of the 2007 ASME Turbo Expo.New York:ASME, 2007, 2:1051-1060.
    [2] 刘传凯, 刘海明, 李艳茹, 等.强瞬变空气系统的模块化仿真建模[J].航空动力学报, 2015, 30(8):1826-1833. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201508007.htm

    LIU C K, LIU H M, LI Y R, et al.Modularized simulation of air system with fast transients[J].Journal of Aerospace Power, 2015, 30(8):1826-1833(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201508007.htm
    [3] CALCAGNI C, GALLAR L, PACHIDIS V.Development of a one dimensional dynamic gas turbine secondary air system model-Part Ⅱ:Assembly and validation of a complete network[C]//Proceedings of the 2009 ASME Turbo Expo.New York:ASME, 2009, 4:435-443.
    [4] GALLAR L, CALCAGNI C, PACHIDIS V, et al.Development of a one dimensional dynamic gas turbine secondary air system model-Part Ⅰ:Tool components development and validation[C]//Proceedings of the 2009 ASME Turbo Expo.New York:ASME, 2009, 4:457-465.
    [5] 李澎, 吴宏, 陶智.二次空气系统一维非定常计算方法[J].航空动力学报, 2014, 29(7):1710-1720. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201407026.htm

    LI P, WU H, TAO Z.One-dimensional unsteady calculational method of secondary air system[J].Journal of Aerospace Power, 2014, 29(7):1710-1720(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201407026.htm
    [6] ZIMMERMANN H, KUTZ J, FISCHER R.Air system correlations.Part 2:Rotating holes and two phase flow[C]//Proceedings of the 1998 International Gas Turbine & Aeroengine Congress & Exhibition.New York:ASME, 1998:V004T09A049.
    [7] DITTMANN M, DULLENKOPF K, WITTIG S.Discharge coefficients of rotating short orifices with radiused and chamfered inlets[C]//Proceedings of the 2003 ASME Turbo Expo.New York:ASME, 2003:1001-1009.
    [8] ROHDE J E, RICHARDS H T, METGER G W.Discharge coefficients for thick plate orifices with approach flow perpendicular and inclined to the orifice axis:NASA-TN-D-5467[R].Washington, D.C.:NASA, 1969.
    [9] MEYFARTH P F, SHINE A J.Experimental study of flow through moving orifices[J].Journal of Basic Engineering, 1965, 87(4):1082-1083. doi: 10.1115/1.3650814
    [10] WITTIG S, KIM S, JAKOBY R, et al.Experimental and numerical study of orifice discharge coefficients in high speed rotating disks[C]//Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition.New York:ASME, 1994:V001T01A052.
    [11] IDRIS A, PULLEN K R, READ R.The influence of incidence angle on the discharge coefficient for rotating radial orifices[C]//Proceedings of the 2004 ASME Turbo Expo.New York:ASME, 2004, 4:307-320.
    [12] IDRIS A, PULLEN K R.Correlations for the discharge coefficient of rotating orifices based on the incidence angle[J].Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy, 2005, 219(5):333-352. doi: 10.1243/095765005X31153
    [13] BAYLEY F J, OWEN J M.Flow between a rotating and stationary disc[J].Aeron Quart, 1969, 20(4):333-354. doi: 10.1017/S000192590000514X
    [14] SOUOSEK J, PFITZNER M, NIEHUIS R.Experimental study of discharge coefficients of radial orifices in high-speed rotating shafts[C]//Proceedings of the 2010 ASME Turbo Expo.New York:ASME, 2010, 4:1051-1060.
    [15] 罗翔, 张达, 徐国强.中心进气开式转静系转盘风阻扭矩实验[J].推进技术, 2015, 36(8):1199-1205. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201508013.htm

    LUO X, ZHANG D, XU G Q.Experimental study on windage torque in unshrouded rotor-stator system with central inflow[J].Journal of Propulsion Technology, 2015, 36(8):1199-1205(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201508013.htm
  • 加载中
图(20)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  115
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-29
  • 录用日期:  2016-12-09
  • 网络出版日期:  2017-09-20

目录

    /

    返回文章
    返回
    常见问答