留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直线驱动电静液作动器的匹配设计规则

王子蒙 焦宗夏 李兴鲁

王子蒙, 焦宗夏, 李兴鲁等 . 直线驱动电静液作动器的匹配设计规则[J]. 北京航空航天大学学报, 2018, 44(5): 1037-1047. doi: 10.13700/j.bh.1001-5965.2017.0304
引用本文: 王子蒙, 焦宗夏, 李兴鲁等 . 直线驱动电静液作动器的匹配设计规则[J]. 北京航空航天大学学报, 2018, 44(5): 1037-1047. doi: 10.13700/j.bh.1001-5965.2017.0304
WANG Zimeng, JIAO Zongxia, LI Xingluet al. Matching design rules of linear-driven electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1037-1047. doi: 10.13700/j.bh.1001-5965.2017.0304(in Chinese)
Citation: WANG Zimeng, JIAO Zongxia, LI Xingluet al. Matching design rules of linear-driven electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1037-1047. doi: 10.13700/j.bh.1001-5965.2017.0304(in Chinese)

直线驱动电静液作动器的匹配设计规则

doi: 10.13700/j.bh.1001-5965.2017.0304
基金项目: 

国家“973”计划 2014CB046406

国家自然科学基金 51235002

详细信息
    作者简介:

    王子蒙  男, 博士研究生。主要研究方向:机电/电液作动系统仿真、设计与控制方法

    焦宗夏  男, 教授, 博士生导师。主要研究方向:复杂机电装备设计与控制、飞控作动系统与余度舵机、流体传输管路振动机理的主动控制技术、机电系统的智能化设计仿真

    李兴鲁  男, 博士研究生。主要研究方向:机电/电液作动系统仿真、设计与控制方法

    通讯作者:

    焦宗夏, E-mail: zxjiao@buaa.edu.cn

  • 中图分类号: TH137.31

Matching design rules of linear-driven electro-hydrostatic actuator

Funds: 

National Basic Research Program of China 2014CB046406

National Natural Science Foundation of China 51235002

More Information
  • 摘要:

    电静液作动器(EHA)是一种高度集成的泵控传动系统,A380和F35等机型已经利用EHA驱动主飞控舵面。但传统的以旋转电机和柱塞泵构成的EHA面临低频响的问题,以一种具有良好动态特性的新原理直线驱动电静液作动器(LEHA)为对象,研究其参数匹配设计问题。LEHA的关键特征在于新型的直线协同配流泵,以及采用直线电机直接驱动泵的吸排油和配流组件。首先,从静态指标匹配性上考虑LEHA的参数设计规则,得到最大空载速度约束条件、最大静态输出力约束条件、系统最高压力约束条件;然后,根据系统模型分析系统各参数对频宽的影响,得到LEHA的动态性能匹配设计规则,具体是指LEHA频宽指标对直线电机振荡频率的约束条件;最后,分析LEHA的功率约束条件,给出了LEHA对惯性负载、弹性负载和黏性阻尼负载在输出力-速度坐标下的功率包络条件,得到LEHA的负载匹配设计约束。LEHA参数设计的6项匹配设计约束条件能够为LEHA的设计过程提供理论依据。

     

  • 图 1  LEHA原理

    Figure 1.  Schematic of LEHA

    图 2  LEHA控制框图

    Figure 2.  Control block diagram of LEHA

    图 3  30 Hz调制频率的LEHA位移响应

    Figure 3.  Displacement response of LEHA when modulation frequency is 30 Hz

    图 4  100 Hz调制频率的LEHA位移响应

    Figure 4.  Displacement response of LEHA when modulation frequency is 100 Hz

    图 5  LEHA频宽与调制频率的关系

    Figure 5.  Relationship between bandwidth of LEHA and modulation frequency

    图 6  直线电机参数约束条件

    Figure 6.  Parameter constraint condition of linear motor

    图 7  LEHA原理样机

    Figure 7.  LEHA prototype

    图 8  LEHA最大空载速度

    Figure 8.  Maximum no-load velocity of LEHA

    图 9  直线泵性能测试结果

    Figure 9.  Testing results of linear pump performance

    图 10  不同调制频率时的LEHA频率特性

    Figure 10.  LEHA frequency response to different modulation frequency

    图 11  LEHA频宽与调制频率的关系(实验结果)

    Figure 11.  Relationship between bandwidth of LEHA and modulation frequency (experimental result)

    表  1  LEHA性能指标

    Table  1.   Performance parameter of LEHA

    参数 符号
    作动器最大空载速度 vact-max
    作动器最大静态输出力 Fact-max
    作动器最大角功率 Pact-max
    -3 dB, -90°频宽 fband
    系统最高压力 pmax
    下载: 导出CSV

    表  2  LEHA的关键参数

    Table  2.   Key parameters of LEHA

    参数 符号
    直线泵吸排油活塞面积 Ap
    吸排油活塞振幅 Sp
    直线电机振荡频率 fm
    直线电机最大电磁力 Fe-max
    作动筒活塞面积 Acyl
    作动筒行程 Scyl
    下载: 导出CSV

    表  3  LEHA参数设计的6项约束条件

    Table  3.   Six constraint conditions for LEHA parameter design

    项目 约束条件内容
    条件1:速度约束 vact-max=8ηpηcApSpfm/Acyl
    条件2:压力约束 pmax=ηm-pηmFe-max/(ηpAp)
    条件3:输出力约束 Fact-max=pmaxAcyl
    条件4:频宽约束 fmKfrepfband, Kfrep=f(fband)
    条件5:角功率约束 Pact-max=8ηmηm-pηcFe-maxSpfm
    条件6:
    负载约束
    惯性负载
    弹性负载
    黏性阻尼负载
    下载: 导出CSV

    表  4  LEHA性能指标需求

    Table  4.   Performance parameter requirement of LEHA

    参数 数值
    作动器最大空载速度vact-max/(m·s-1) 0.06
    作动器最大静态输出力Fact-max/kN 6
    作动器最大角功率Pact-max/W 360
    -3 dB, -90°频宽fband/Hz 6
    下载: 导出CSV

    表  5  LEHA负载参数

    Table  5.   Parameters of LEHA load

    负载类型 参数值 负载条件取值
    惯性负载

    x=x0sin(ωlt)
    mobj=60 kg
    x0=0.002 m
    ωl=14π
    1.87 N·m·s-1
    弹性负载
    F=Kx
    x=x0sin(ωlt)
    K=1.5×105 N·m-1
    x0=0.04 m
    ωl
    65.3 N·m·s-1
    黏性阻尼负载

    x=x0sin(ωlt)
    Bl=600 N·m-1·s
    x0=0.04 m
    ωl=4π
    26.3 N·m·s-1
    下载: 导出CSV

    表  6  LEHA的关键参数取值

    Table  6.   Key parameter values of LEHA

    参数 数值
    直线泵吸排油活塞面积Ap/mm2 59
    吸排油活塞振幅Sp/mm ±5
    直线电机振荡频率Fm/Hz 30
    直线电机最大电磁力Fe-max/N 439
    作动筒活塞面积Acyl/mm2 954
    作动筒行程Scyl/mm ±40
    下载: 导出CSV
  • [1] WHEELER P, BOZHKO S.The more electric aircraft:Technology and challenges[J].IEEE Electrification Magazine, 2014, 2(4):6-12. doi: 10.1109/MELE.2014.2360720
    [2] WHEELER P. Technology for the more and all electric aircraft of the future[C]//IEEE International Conference on Automatica. Piscataway, NJ: IEEE Press, 2016: 1-5.
    [3] SARLIOGLU B, MORRIS C T.More electric aircraft:Review, challenges, and opportunities for commercial transport aircraft[J].IEEE Transactions on Transportation Electrification, 2015, 1(1):54-64. doi: 10.1109/TTE.2015.2426499
    [4] DERRIEN J C, SECURITE S D. Electro-mechanical actuator (EMA) advanced technologies for flight controls[C]//28th International Congress of the Aeronautical Sciences, 2012: 1-10.
    [5] ALLE N, HIREMATH S S, MAKARAM S, et al.Review on electro hydrostatic actuator for flight control[J].International Journal of Fluid Power, 2016, 17(2):125-145. doi: 10.1080/14399776.2016.1169743
    [6] BOTTEN S L, WHITLEY C R, KING A D.Flight control actuation technology for next-generation all-electric aircraft[J].Technology Review Journal, 2000, 23(6):55-68. https://www.researchgate.net/publication/228505299_Flight_Control_Actuation_Technology_for_Next-Generation_All-Electric_Aircraft
    [7] CHAKRABORTY I, TRAWICK D R, JACKSON D, et al. Electric control surface actuator design optimization and allocation for the more electric aircraft[C]//2013 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2013: 4283.
    [8] VAN DEN BOSSCHE D. The A380 flight control electro-hydrostatic actuators, achievements and lessons learnt[C]//25th International Congress of the Aeronautical Sciences, 2006: 1-8.
    [9] ANDERSON J A. Variable displacement electro-hydrostatic actuator[C]//IEEE Aerospace and Electronics Conference. Piscataway, NJ: IEEE Press, 1991: 529-534.
    [10] SHEN W, MAI Y, SU X, et al.A new electric hydraulic actuator adopted the variable displacement pump[J].Asian Journal of Control, 2016, 18(1):178-191. doi: 10.1002/asjc.v18.1
    [11] JIANG J H, LIU Q, LIU J L, et al.Performance comparison of displacement and speed control in electro-hydrostatic actuator[J].Applied Mechanics and Materials, 2015, 779:205-211. doi: 10.4028/www.scientific.net/AMM.779
    [12] HANKAN C, TUNA B, BULENT E P. A complete analysis for single rod electro hydrostatic actuators[C]//10th International Fluid Power Conference. Dresden: IFAS, 2016: 119-132.
    [13] NAVARRO R. Performance of an electro-hydrostatic actuator on the F-18 systems research aircraft: NASA/TM-97-206224[R]. Edwards: Dryden Flight Research Center, 1997: 1-37.
    [14] MCCULLOUGH. Design and characterization of a dual electro-hydrostatic actuator[D]. Hamilton: McMaster University, 2011: 4-11.
    [15] ANDERSON E, LINDLER J. Smart material actuator with long stroke and high power output[C]//43rd Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002: 1354.
    [16] JOHN S, SIROHI J, WANG G, et al.Comparison of piezoelectric, magnetostrictive, and electrostrictive hybrid hydraulic actuators[J].Journal of Intelligent Material Systems and Structures, 2007, 18(10):1035-1048. doi: 10.1177/1045389X06072355
    [17] KAN J, TANG K, REN Y, et al.Study on a piezohydraulic pump for linear actuators[J].Sensors and Actuators A:Physical, 2009, 149(2):331-339. doi: 10.1016/j.sna.2008.12.008
    [18] CHAUDHURI A, WERELEY N M.Experimental validation of a hybrid electrostrictive hydraulic actuator analysis[J].Journal of Vibration and Acoustics, 2010, 132(2):021006. doi: 10.1115/1.4000778
    [19] KIM G W, WANG K W.Helmholtz resonance in a piezoelectric-hydraulic pump-based hybrid actuator[J].Smart Materials and Structures, 2010, 20(1):015010. http://deepblue.lib.umich.edu/bitstream/handle/2027.42/90809/0964-1726_20_1_015010.pdf?sequence=1
    [20] TAN H, HURST W, LEO D.Performance modeling of a piezohydraulic actuation system with active valves[J].Smart Materials and Structures, 2004, 14(1):91-110.
    [21] LI Y, JIAO Z, YAN L, et al.Conceptual design and composition principles analysis of a novel collaborative rectification structure pump[J].Journal of Dynamic Systems, Measurement, and Control, 2014, 136(5):054507. doi: 10.1115/1.4027504
    [22] LIANG H, JIAO Z, YAN L, et al.Design and analysis of a tubular linear oscillating motor for directly-driven EHA pump[J].Sensors and Actuators A:Physical, 2014, 210:107-118. doi: 10.1016/j.sna.2014.01.026
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  74
  • PDF下载量:  454
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-12
  • 录用日期:  2017-11-19
  • 网络出版日期:  2018-05-20

目录

    /

    返回文章
    返回
    常见问答