[1] 罗佳, 王玲. 基于凹凸特性笔顺编码的手写体数字识别方法[J].计算机工程与科学,2010,29(5):69-70.LUO J,WANG L.A new method for the off-line recognition ofhandwritten digits based on convex-concave coding[J].Computer Engineering & Science,2010,29(5):69-70(in Chinese).
[2] 倪桂博,梁晓尊.基于结构形状的印刷体数字识别方法[J].软件导刊,2010,9(5):67-68.NI G B,LIANG X Z.The method of printed figures based on structure[J].Software Guide,2010,9(5):67-68(in Chinese).
[3] 陈爱斌,陆丽娜.基于多特征的印刷体数字识别[J].计算技术与自动化,2011,30(3):105-108.CHEN A B,LU L N.The printed number character recognition based on feature[J].Computing Technology and Automation,2011,30(3):105-108(in Chinese).
[4] 曾志军,孙国强.基于改进的BP网络数字字符识别[J].上海理工大学学报,2008,30(2):201-204.ZENG Z J,SUN G Q.Number character recognition based on improved BP neural network[J].Journal of University of Shanghai for Science and Technology,2008,30(2):201-204(in Chinese).
[5] 刘春丽,吕淑静.基于混合特征的孟加拉手写体数字识别[J].计算机工程与应用,2007,43(20):214-215.LIU C L,LV S J.Bangla handwritten numeral recognition based on blend features[J].Computer Engineering & Applications,2007,43(20):214-215(in Chinese).
[6] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
[7] SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2014:1891-1898.
[8] TAIGMAN Y,YANG M,RANZATO M,et al.DeepFace:Closing the gap to human-level performance in face verification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2014:1701-1708.
[9] SUN Y,CHEN Y,WANG X,et al.Deep learning face representation by joint identification-verification[C]//International Conference on Neural Information Processing Systems.London:MIT Press,2014:1988-1996.
[10] ZHANG L,LIN L,LIANG X,et al.Is faster R-CNN doing well for pedestrian detection?[C]//European Conference on Computer Vision.Berlin:Springer,2016:443-457.
[11] SINGH S P,KUMAR A,DARBARI H,et al.Machine translation using deep learning:An overview[C]//International Conference on Computer,Communications and Electronics.Piscataway,NJ:IEEE Press,2017:162-167.
[12] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:770-778.
[13] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.London:MIT Press,2012:1097-1105.
[14] CORDTS M,OMRAN M,RAMOS S,et al.The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:3213-3223.
[15] FARABET C,COUPRIE C,NAJMAN L,et al.Learning hierarchical features for scene labeling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1915-1929.
[16] OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
[17] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. |