留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气层外拦截弹建模与攻防效能分析

谢经纬 陈万春

谢经纬, 陈万春. 大气层外拦截弹建模与攻防效能分析[J]. 北京航空航天大学学报, 2018, 44(9): 1826-1838. doi: 10.13700/j.bh.1001-5965.2018.0095
引用本文: 谢经纬, 陈万春. 大气层外拦截弹建模与攻防效能分析[J]. 北京航空航天大学学报, 2018, 44(9): 1826-1838. doi: 10.13700/j.bh.1001-5965.2018.0095
XIE Jingwei, CHEN Wanchun. Exo-atmospheric interceptor modeling and penetration and defense effectiveness analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1826-1838. doi: 10.13700/j.bh.1001-5965.2018.0095(in Chinese)
Citation: XIE Jingwei, CHEN Wanchun. Exo-atmospheric interceptor modeling and penetration and defense effectiveness analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1826-1838. doi: 10.13700/j.bh.1001-5965.2018.0095(in Chinese)

大气层外拦截弹建模与攻防效能分析

doi: 10.13700/j.bh.1001-5965.2018.0095
详细信息
    作者简介:

    谢经纬  男, 博士研究生。主要研究方向:导弹飞行力学与控制、导弹总体设计、导弹攻防对抗和效能评估

    陈万春  男, 博士, 教授, 博士生导师。主要研究方向:导弹总体设计与仿真, 导弹飞行动力学、制导与控制, 导弹武器系统攻防对抗与作战效能分析

    通讯作者:

    陈万春, E-mail:wanchun_chen@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Exo-atmospheric interceptor modeling and penetration and defense effectiveness analysis

More Information
  • 摘要:

    基于跨大气层反导拦截的各阶段流程,首先完成了某型拦截弹的动力学建模,然后利用预测拦截点(PIP)导引以及射表插值的思想,设计了针对大气层外中远程弹道类目标的中段拦截制导方法。在此基础上,研究了不同情形下拦截弹针对弹道导弹的部署区域,发射区段与拦截区段,以及固定拦截阵地的保护范围,验证了大气层外拦截导引方法的有效性。考虑到弹道导弹可能采取的突防措施,包括机动变轨、电子干扰以及红外诱饵掩护等手段,通过设计大样本仿真试验,分析进攻弹所采取的不同措施带来的突防效能。对于能够拦截常规弹道的拦截弹部署点,进攻弹可以通过机动变轨和释放诱饵等策略分阶段起到干扰作用,将突防概率提高到70%以上。

     

  • 图 1  拦截弹主要尺寸

    Figure 1.  Main dimensions of interceptor

    图 2  拦截弹速度分布

    Figure 2.  Velocity distribution of interceptor

    图 3  弹体垂直姿态下的变量

    Figure 3.  Variables in vertical attitude of missile body

    图 4  初始转弯段运动学方程

    Figure 4.  Kinematic equation of initial turning phase

    图 5  第1级助推段的姿态角曲线

    Figure 5.  Curves of attitude angle during the first boosting stage

    图 6  地心系下的飞行示意图

    Figure 6.  Schematic diagram of travelling in earth-center frame

    图 7  期望速度的解算流程

    Figure 7.  Calculation procedure of desired velocity

    图 8  EKV姿轨控系统结构

    Figure 8.  Structure of DACS of EKV

    图 9  轨控发动机开关逻辑

    Figure 9.  Switching logic of divert thruster

    图 10  射表中tOPT分布的示意图

    Figure 10.  Schematic diagram of distribution of tOPT in firing table

    图 11  预测拦截点的搜索

    Figure 11.  Search of predicted intercept point

    图 12  预测拦截点更新的流程

    Figure 12.  Update procedure of predicted intercept point

    图 13  不同飞行时间以及相应的弹道

    Figure 13.  Multiple flight time and corresponding trajectories

    图 14  理论计算与仿真得到的布防区对比

    Figure 14.  Comparison of defense deployment zone between theoretical calculation and simulation

    图 15  各飞行时间下弹道对应的布防区

    Figure 15.  Defense deployment zones for different trajectories corresponding to each flight time

    图 16  针对5 000 km弹道组的发射区段与拦截区段

    Figure 16.  Firing/intercept sections on a series of trajectories with range of 5 000 km

    图 17  单个拦截阵地的保护区域

    Figure 17.  Protective zone of single intercept position

    图 18  弹头机动变轨示意图

    Figure 18.  Schematic diagram of warhead maneuver orbital transfer

    图 19  弹头变轨致使修正预测拦截点

    Figure 19.  Revision of predicted intercept point due towarhead orbital transfer

    图 20  电子干扰延迟拦截弹的响应

    Figure 20.  Interceptor response delay due to electronic jamming

    图 21  包含诱饵的拦截仿真示意图

    Figure 21.  Schematic diagram of intercept simulation including baits

    图 22  各火力单元拦截弹的末制导指令

    Figure 22.  Terminal guidance commands of interceptor of each firing unit

    图 23  机动变轨目标及常规目标的可拦截发射点对比

    Figure 23.  Comparison of launch points for intercepting maneuver orbital transfer target and general target

    图 24  部署区域内拦截成功率的分布

    Figure 24.  Successful intercept probability distribution in deployment zone

    表  1  火箭助推器的基本参数

    Table  1.   Basic parameters of rocket booster

    级数 总质量/kg 燃料质量/kg 推力/kN 工作时间/s
    1 725.7 577.8 62.55×4 6
    2 1 134.0 398.6
    508.6
    139.246
    40.611
    8
    35
    3 453.5 150.0
    150.0
    42.0
    42.0
    10
    10
    下载: 导出CSV

    表  2  EKV的基本参数

    Table  2.   Basic parameters of EKV

    参数 数值
    红外导引头视距/km 700
    长度/m 0.68
    直径/m 0.19
    总质量/kg 60.0
    燃料质量/kg 20.0
    秒流量/(kg·s-1) 1.0
    推力/kN 2.6
    下载: 导出CSV

    表  3  进攻弹的仿真想定

    Table  3.   Scenario of ballistic missile

    关机点 目标Ⅰ 目标Ⅱ 飞行时间/s 诱饵数
    (0°, 0°) (E45°, 0°) (E42°, N2°) 685.46 8
    下载: 导出CSV

    表  4  拦截仿真结果

    Table  4.   Intercept simulation results

    发射阵地 飞行时间/s 燃料消耗/% 脱靶量/m
    (E30°, 0°) 313.22 72.41 3326.2
    (E40°, 0°) 408.87 62.62 0.0393
    下载: 导出CSV

    表  5  诱饵数与EKV锁定弹头的概率

    Table  5.   Bait number and probability of EKV locking on warhead

    n 3 4 5 6 7 8
    Pd(n) 0.3620 0.2565 0.2141 0.1836 0.1607 0.1429
    下载: 导出CSV
  • [1] ZARCHAN P.Tactical and strategic missile guidance[M].6th ed.Reston: AIAA, 2012: 213-324, 715-862.
    [2] ZES D.Exo-atmospheric intercept using modified proportional guidance with gravity correction for coast phase: AIAA-94-0209[R].Reston: AIAA, 1994.
    [3] ZES D.Exo-atmospheric intercept with J2 correction: AIAA-98-4305[R].Reston: AIAA, 1998. https://www.sciencedirect.com/science/article/pii/S0016003211001669
    [4] PHILLIPS C A, MALYEVAC D S.Pulse motor optimization via mission charts for an exoatmospheric interceptor[J].Journal of Guidance, Control, and Dynamics, 1998, 21(4):611-617. doi: 10.2514/2.4279
    [5] PHILLIPS C A, MALYEVAC D S.Exoatmospheric interceptor pulse motor optimization with discrete bias removal[J].Journal of Guidance, Control, and Dynamics, 2000, 23(2):376-378. doi: 10.2514/2.4537
    [6] GUTMAN S, RUBINSKY S.Exo-atmospheric mid-course guidance[C]//AIAA Guidance, Navigation, and Control Conference.Reston: AIAA, 2015: 1-17.
    [7] HABLANI H B.Pulsed guidance of exoatmospheric interceptor with image processing delays in angle measurements: AIAA-2000-4272[R] Reston: AIAA, 2000. https://www.researchgate.net/publication/269208887_Pulsed_guidance_of_exoatmospheric_interceptors_with_image_processing_delays_in_angle_measurements
    [8] HABLANI H B, PEARSON D W.Miss distance error analysis of exoatmospheric interceptors[J].Journal of Guidance, Control, and Dynamics, 2004, 27(2):283-289. doi: 10.2514/1.9168
    [9] GUO J G, ZHANG T B, ZHOU J, et al.The three dimensional guidance system design of terminal attack phase for exo-atmospheric kill vehicle[J].International Journal for Light and Electron Optics, 2017, 130:1158-1167. doi: 10.1016/j.ijleo.2016.11.135
    [10] SHIMA T, GOLAN O M.Exo-atmospheric guidance of anaccelerating interceptor missile[J].Journal of the Franklin Institute, 2012, 349(2):622-637. doi: 10.1016/j.jfranklin.2011.06.024
    [11] ENDER T, LEURCK R F, WEAVER B.Systems-of-systems analysis of ballistic missile defense architecture effectiveness through surrogate modeling and simulation[J].IEEE Systems Journal, 2010, 4(2):156-166. doi: 10.1109/JSYST.2010.2045541
    [12] 吴钰飞, 罗小明, 申之明, 等.诱饵影响下多枚弹道导弹突防效能研究[J].装备学院学报, 2008, 19(3):57-62. doi: 10.3783/j.issn.1673-0127.2008.03.013

    WU Y F, LUO X M, SHEN Z M, et al.Study on the penetration effectiveness of multiple ballistic missiles considering the effect of decoys[J].Journal of the Academy of Equipment Command & Technology, 2008, 19(3):57-62(in Chinese). doi: 10.3783/j.issn.1673-0127.2008.03.013
    [13] YAO J, HUANG Q, WANG W.Analyzing ballistic missile defense system effectiveness based on functional dependency network analysis[J].The Open Cybernetics & Systemics Journal, 2015, 9(1):678-682. http://benthamopen.com/ABSTRACT/TOCSJ-9-678
    [14] 杨晓凌, 邱涤珊.三种不确定性条件下的拦截器目标分配模型[J].弹箭与制导学报, 2012, 32(4):4-8. doi: 10.3969/j.issn.1673-9728.2012.04.002

    YANG X L, QIU D S.Interceptor allocation models under threr types of uncertainty[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(4):4-8(in Chinese). doi: 10.3969/j.issn.1673-9728.2012.04.002
    [15] WILKENING D A.A simple model for calculating ballistic missile defense effectiveness[J].Science and Global Security, 1999, 8(2):183-255. doi: 10.1080/08929880008426475
    [16] GLASER C L, FETTER S.Should the United States reject MAD Damage limitation and U.S.nuclear strategy toward China[J].International Security, 2016, 41(1):49-98. doi: 10.1162/ISEC_a_00248
    [17] XIE J W, CHEN W C.Switching logic design for divert and attitude control system of exoatmospheric kill vehicle[C]//8th IEEE International Conference on Cybernetics and Intelligent Systems(CIS)/IEEE Conference on Robotics, Automation and Mechatronics (RAM).Piscataway, NJ: IEEE Press, 2017: 194-200.
    [18] 谢经纬, 陈万春.基于概率模型的攻防效能估算与仿真分析[J].导弹与航天运载技术, 2017(4):1-5. http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201704001

    XIE J W, CHEN W C.Estimation and simulation analysis based on probabilistic model for the effectiveness of penetration and defense[J].Missiles and Space Vehicles, 2017(4):1-5(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201704001
  • 加载中
图(24) / 表(5)
计量
  • 文章访问数:  759
  • HTML全文浏览量:  168
  • PDF下载量:  539
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-22
  • 录用日期:  2018-03-30
  • 网络出版日期:  2018-09-20

目录

    /

    返回文章
    返回
    常见问答