留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开关磁阻电机矩角特性模型非线性拟合方法

叶威 马齐爽 徐萍 张珀铭

叶威, 马齐爽, 徐萍, 等 . 开关磁阻电机矩角特性模型非线性拟合方法[J]. 北京航空航天大学学报, 2019, 45(1): 83-92. doi: 10.13700/j.bh.1001-5965.2018.0223
引用本文: 叶威, 马齐爽, 徐萍, 等 . 开关磁阻电机矩角特性模型非线性拟合方法[J]. 北京航空航天大学学报, 2019, 45(1): 83-92. doi: 10.13700/j.bh.1001-5965.2018.0223
YE Wei, MA Qishuang, XU Ping, et al. Nonlinear fitting method for torque-angle characteristic model of switched reluctance motor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 83-92. doi: 10.13700/j.bh.1001-5965.2018.0223(in Chinese)
Citation: YE Wei, MA Qishuang, XU Ping, et al. Nonlinear fitting method for torque-angle characteristic model of switched reluctance motor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 83-92. doi: 10.13700/j.bh.1001-5965.2018.0223(in Chinese)

开关磁阻电机矩角特性模型非线性拟合方法

doi: 10.13700/j.bh.1001-5965.2018.0223
详细信息
    作者简介:

    叶威  男, 博士研究生。主要研究方向:磁阻电机建模及控制

    马齐爽  男, 博士, 教授。主要研究方向:电气系统检测、电气系统控制及可靠性、磁阻电机

    通讯作者:

    马齐爽, E-mail: qsma304@buaa.edu.cn

  • 中图分类号: TM352

Nonlinear fitting method for torque-angle characteristic model of switched reluctance motor

More Information
  • 摘要:

    开关磁阻电机难以采用传统电机分析方法进行建模,通过分析开关磁阻电机电磁转矩生成原理,确定了不同电机饱和状态下电磁转矩与相电感导数之间的关系。用分段函数非线性拟合的方式对电感导数曲线进行建模,再进一步得到开关磁阻电机可逆矩角特性的解析模型,并基于电机的结构参数和约束条件逐一确定和优化了模型的各个参数。利用可逆矩角特性模型,可以方便地计算电机磁化曲线和瞬时磁链,给电机设计及驱动控制带来很大的方便。通过2个样机的实测数据和有限元结果对该模型解析计算结果的准确性进行了验证。

     

  • 图 1  电感L0(θ)及其导数L0p(θ)的理想和实际曲线示意图

    Figure 1.  Schematic of ideal and real curves of inductance L0(θ) and its derivative L0p(θ)

    图 2  开关磁阻电机几何尺寸

    Figure 2.  Physical dimensioning of switched reluctance motor

    图 3  L0pN由分段函数grise(x)、gtop(x)和gfall(x)拟合

    Figure 3.  L0pN is fitted by piecewise function grise(x), gtop(x) and gfall(x)

    图 4  不同的m值所对应的过渡区间

    Figure 4.  Transition intervals for different m values

    图 5  不同αμrise下的grise(x)曲线

    Figure 5.  Curves of grise(x) for different α and μrise

    图 6  不同μtop下的gtop(x)曲线

    Figure 6.  Curves of gtop(x) for different μtop

    图 7  不同k下的gfall(1)(x)和gfall(2)(x)的曲线

    Figure 7.  Curves of gfall(1)(x) and gfall(2)(x) for different k

    图 8  Lal/Lu值与n的关系曲线

    Figure 8.  Curve of relationship between value of Lal/Lu and n

    图 9  归一化的f(x)与f1(x)的曲线

    (n=3, λ=1.2, m=13)

    Figure 9.  Normalized curves of f(x) and f1(x)

    (n=3, λ=1.2, m=13)

    图 10  两个样机的有限元模型及SRM1的磁路仿真结果

    Figure 10.  Finite element models of two prototypes and magnetic simulation result of SRM1

    图 11  SRM1有限元模型结果

    Figure 11.  Finite element model results of SRM1

    图 12  样机SRM1有限元模型与不同模型参数的解析模型结果对比

    Figure 12.  Result comparison between finite element model and analytical model with different model parameters for prototype SRM1

    图 13  样机SRM1解析模型、有限元模型和实验测量结果对比

    Figure 13.  Result comparison among analytical model, finite element model and experimental measurement

    图 14  样机SRM2有限元模型与解析模型结果对比

    Figure 14.  Result comparison between finite element model and analytical model for prototype SRM2

    表  1  两个开关磁阻样机的主要参数

    Table  1.   Main parameters of two SRM prototypes

    参数 SRM1 SRM2
    定转子极数 6-4 6-4
    定子外径/mm 150 100
    定子内径/mm 95 50
    定子轭高/mm 13.75 12.2
    定子极弧系数 0.433 3 0.433 3
    转子外径/mm 94.4 49.4
    转子内径/mm 40 10
    转子极弧系数 0.3 0.3
    转子轭高/mm 13.6 10
    轴向长度/mm 40 40
    相绕组匝数 19 50
    硅钢片材料 D25_50 D25_50
    电机容量 7.5 kW, 270 V,
    3 000 r/min
    200 W, 60 V,
    3 000 r/min
    下载: 导出CSV

    表  2  各解析模型的参数取值

    Table  2.   Parameter values of each analytical model

    模型 m n xbo μrise α x1 μtop β xeo μfall k
    a 13 3 0.39 0.23 2 0.4 0.5 2 0.98 0.95 35
    b 25 3 0.39 0.23 2 0.4 0.5 2 0.98 0.95 20
    c 25 3 0.39 0.23 2 0.4 0.5 2 0.98 0.95 35
    下载: 导出CSV

    表  3  样机SRM1解析模型和有限元模型的TerrorTR

    Table  3.   Terror and TR of analytical model and finite element model for prototype SRM1

    模型 误差 Is=2 A Is=4 A Is=6 A Is=8 A
    a Terror/(N·m) 0.24 0.97 2.07 4.26
    TR/% 2.92 2.92 2.90 2.95
    b Terror/(N·m) 0.38 1.56 3.16 2.81
    TR/% 2.90 2.90 2.86 2.66
    c Terror/(N·m) 0.10 0.42 0.73 2.97
    TR/% 2.55 2.55 2.54 2.60
    下载: 导出CSV

    表  4  样机SRM2解析模型各参数值

    Table  4.   Parameter values of analytical model for prototype SRM2

    参数 m n xbo μrise α x1 μtop β xeo μfall k
    数值 40 3 0.4 0.23 2 0.41 0.5 2 0.99 0.95 20
    下载: 导出CSV
  • [1] ARUMUGAM R, LOWTHER D A, KRISHNAN R, et al. Magnetic field analysis of a switched reluctance motor using a two-dimensional finite element method[J].IEEE Transactions on Magnetics, 1985, 21(5):1883-1885. doi: 10.1109/TMAG.1985.1063910
    [2] LIN H, LOW T S, CHEN S X.Investigation on magnetic saturation in switched reluctance motor using 2D hybrid finite element method[J].IEEE Transactions on Magnetics, 1996, 32(5):4317-4319. doi: 10.1109/20.538855
    [3] TORREY D A, LANG J H.Modeling a nonlinear variable-reluctance motor drive[J].IEE Proceedings B:Electric Power Applications, 1990, 137(5):314-326. doi: 10.1049/ip-b.1990.0038
    [4] 邓智泉, 杨刚, 张媛, 等.一种新型的无轴承开关磁阻电机数学模型[J].中国电机工程学报, 2005, 25(9):139-146. doi: 10.3321/j.issn:0258-8013.2005.09.026

    DENG Z Q, YANG G, ZHANG Y, et al.An innovative mathematical model for a bearingless switched reluctance motor[J].Proceedings of the Chinese Society for Electrical Engineering, 2005, 25(9):139-146(in Chinese). doi: 10.3321/j.issn:0258-8013.2005.09.026
    [5] RADUN A V.Design considerations for the switched reluctance motor[J].IEEE Transactions on Industry Applications, 1995, 31(5):1079-1087. doi: 10.1109/28.464522
    [6] VUJICIC V, VUKOSAVIC S N.A simple nonlinear model of the switched reluctance motor[J].IEEE Transactions on Energy Conversion, 2000, 15(4):395-400. doi: 10.1109/60.900499
    [7] LOOP B P, SUDHOFF S D.Switched reluctance machine model using inverse inductance characterization[J].IEEE Transactions on Industry Applications, 2003, 39(3):743-751. doi: 10.1109/TIA.2003.811785
    [8] RADIMOV N, BEN-HAIL N, RABINOVICI R.Simple model of switched-reluctance machine based only on aligned and unaligned position data[J].IEEE Transactions on Magnetics, 2004, 40(3):1562-1572. doi: 10.1109/TMAG.2004.827185
    [9] SALMASI F R, FAHIMI B.Modeling switched-reluctance machines by decomposition of double magnetic saliencies[J].IEEE Transactions on Magnetics, 2004, 40(3):1556-1561. doi: 10.1109/TMAG.2004.826624
    [10] XUE X D, CHENG K W E, HO S L.Optimization and evaluation of torque sharing functions for torque ripple minimization in switched reluctance motor drives[J].IEEE Transactions on Power Electronics, 2009, 24(9):2076-2090. doi: 10.1109/TPEL.2009.2019581
    [11] VUJICIC V P.Modeling of a switched reluctance machine based on the invertible torque function[J].IEEE Transactions on Magnetics, 2008, 44(9):2186-2194. doi: 10.1109/TMAG.2008.2000663
    [12] KJAER P C, GRIBBLE J J, MILLER T J E.High-grade control of switched reluctance machines[J].IEEE Transactions on Industry Applications, 1997, 33(6):1585-1593. doi: 10.1109/28.649972
    [13] MIKAIL R, SOZER Y, HUSAIN I, et al.Torque ripple minimization of switched reluctance machines through current profiling[J].IEEE Transactions on Industry Applications, 2013, 49(3):1258-1267. doi: 10.1109/TIA.2013.2252592
    [14] KHALIL A, HUSAIN I.A Fourier series generalized geometry-based analytical model of switched reluctance machines[J].IEEE Transactions on Industry Applications, 2007, 43(3):673-684. https://ieeexplore.ieee.org/document/4215006
    [15] HOSSAIN S A, HUSAIN I.A geometry based simplified analytical model of switched reluctance machines for real-time controller implementation[J].IEEE Transactions on Power Electronics, 2003, 18(6):1384-1389. doi: 10.1109/TPEL.2003.818870
    [16] VUJICIC V P.Minimization of torque ripple and copper losses in switched reluctance drive[J].IEEE Transactions on Power Electronics, 2012, 27(1):388-399. doi: 10.1109/TPEL.2011.2158447
    [17] MILLER T J E.Electronic control of switched reluctance machines[M].Oxford:Newnes Press, 2001.
    [18] KHALIL A, HUSAIN I.A Fourier series generalized geometry-based analytical model of switched reluctance machines[J].IEEE Transactions on Industry Applications, 2007, 43(3):673-684. doi: 10.1109/TIA.2007.895737
    [19] MILLER T I J, GLINKA M, MCGILP M, et al.Ultra-fast model of the switched reluctance motor[C]//IEEE Industry Applications Conference.Piscataway, NJ: IEEE Press, 1998: 319-326. https://ieeexplore.ieee.org/document/732313
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  629
  • HTML全文浏览量:  52
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-23
  • 录用日期:  2018-07-27
  • 网络出版日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答