[1] BODNAR C.Text to image synthesis using generative adversarial networks[EB/OL].(2018-05-02)[2019-07-08].https://arxiv.org/abs/1805.00676.
[2] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2014:2672-2680.
[3] ZHANG H,XU T,LI H,et al.Stackgan++:Realistic image synthesis with stacked generative adversarial networks[EB/OL].(2018-06-28)[2019-07-08].https://arxiv.org/abs/1710.10916.
[4] SALIMANS T,GOODFELLOW I,ZAREMBA W,et al.Improved techniques for training gans[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2016:2234-2242.
[5] LI Z,TANG J,MEI T.Deep collaborative embedding for social image understanding[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(9):2070-2083.
[6] DENG Y,LOY C C,TANG X.Image aesthetic assessment:An experimental survey[J].IEEE Signal Processing Magazine,2017,34(4):80-106.
[7] DATTA R,JOSHI D,LI J,et al.Studying aesthetics in photographic images using a computational approach[C]//European Conference on Computer Vision.Berlin:Springer,2006:288-301.
[8] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press, 2012:1097-1105.
[9] KONG S,SHEN X,LIN Z,et al.Photo aesthetics ranking network with attributes and content adaptation[C]//European Conference on Computer Vision.Berlin:Springer,2016:662-679.
[10] CHOPRA S,HADSELL R,LECUN Y.Learning a similarity metric discriminatively,with application to face verification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2005:539-546.
[11] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].(2016-01-07)[2019-07-08]. https://arxiv.org/abs/1511.06434.
[12] SALIMANS T,GOODFELLOW I,ZAREMBA W,et al.Improved techniques for training gans[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2016:2234-2242.
[13] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein gan[EB/OL].(2017-12-06)[2019-07-08].https://arxiv.org/abs/1701.07875.
[14] MIRZA M,OSINDERO S.Conditional generative adversarial nets[EB/OL].(2014-11-06)[2019-07-08].https://arxiv.org/abs/1411.1784.
[15] REED S,AKATA Z,YAN X,et al.Generative adversarial text to image synthesis[EB/OL].(2016-06-05)[2019-07-08].https://arxiv.org/abs/1605.05396.
[16] ZHANG H,XU T,LI H,et al.Stackgan:Text to photo-realistic image synthesis with stacked generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2017:5907-5915.
[17] XU T,ZHANG P,HUANG Q,et al.Attngan:Fine-grained text to image generation with attentional generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2018:1316-1324.
[18] CHA M,GWON Y,KUNG H T.Adversarial nets with perceptual losses for text-to-image synthesis[C]//2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP).Piscataway,NJ:IEEE Press,2017:1-6.
[19] JOHNSON J,ALAHI A,LI F.Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision.Berlin:Springer,2016:694-711.
[20] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:2818-2826. |