留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直旋转圆盘边缘液体形态

覃文隆 樊未军 石强 徐汉卿 张荣春

覃文隆, 樊未军, 石强, 等 . 垂直旋转圆盘边缘液体形态[J]. 北京航空航天大学学报, 2019, 45(6): 1203-1210. doi: 10.13700/j.bh.1001-5965.2018.0615
引用本文: 覃文隆, 樊未军, 石强, 等 . 垂直旋转圆盘边缘液体形态[J]. 北京航空航天大学学报, 2019, 45(6): 1203-1210. doi: 10.13700/j.bh.1001-5965.2018.0615
TAN Wenlong, FAN Weijun, SHI Qiang, et al. Liquid morphology at edge of vertical rotating disc[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1203-1210. doi: 10.13700/j.bh.1001-5965.2018.0615(in Chinese)
Citation: TAN Wenlong, FAN Weijun, SHI Qiang, et al. Liquid morphology at edge of vertical rotating disc[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1203-1210. doi: 10.13700/j.bh.1001-5965.2018.0615(in Chinese)

垂直旋转圆盘边缘液体形态

doi: 10.13700/j.bh.1001-5965.2018.0615
基金项目: 

国家自然科学基金 51506003

详细信息
    作者简介:

    覃文隆  男, 博士研究生。主要研究方向:机械旋转雾化

    张荣春  男, 博士, 讲师。主要研究方向:航空发动机燃烧室燃烧

    通讯作者:

    张荣春, E-mail: zhangrongchun@buaa.edu.cn

  • 中图分类号: V231.2+3;TK16

Liquid morphology at edge of vertical rotating disc

Funds: 

National Natural Science Foundation of China 51506003

More Information
  • 摘要:

    为了解重力对旋转圆盘表面液体流动的影响,利用高速摄影,对垂直旋转圆盘边缘液体形态进行了试验研究。结果表明,与水平旋转圆盘边缘液体分为直接液滴、液柱和液膜3种形态不同,垂直旋转圆盘边缘液体分为液柱、液膜和柱膜纠缠3种形态。垂直旋转圆盘底部与顶部液体形态并不一致。底部未出现液膜形态,当流量不大于24 g/s时,为液柱形态;当流量大于等于30 g/s时,为柱膜纠缠形态。当流量为12~21 g/s、转速为1 000~2 100 r/min,顶部出现液膜形态;当流量小于12 g/s时,顶部为液柱形态;当流量大于12 g/s时,液柱形态消失,由柱膜纠缠形态取代。由于重力影响,垂直旋转圆盘边缘液体形态变化程度远大于水平旋转圆盘;在流量大到一定程度后,圆盘底部形成液柱形态需要的转速会大大增加。

     

  • 图 1  试验台示意图

    Figure 1.  Schematic of test devices

    图 2  旋转圆盘示意图

    Figure 2.  Schematic of rotating disc

    图 3  不同流量下圆盘底部液体形态

    Figure 3.  Liquid morphology of disc bottom at different flow rates

    图 4  不同转速下圆盘底部液体形态

    Figure 4.  Liquid morphology of disc bottom at different rotating speeds

    图 5  临界转速-流量关系

    Figure 5.  Relation between critical rotating speed and flow rate

    图 6  圆盘表面液体形态

    Figure 6.  Liquid morphology on disc surface

    图 7  不同流量下圆盘顶部液体形态

    Figure 7.  Liquid morphology of disc top at different flow rates

    图 8  液态分布

    Figure 8.  Liquid distribution

    图 9  液膜存在时转速-流量关系

    Figure 9.  Relation between rotating speed and flow rate when liquid film exists

    图 10  不同时间下圆盘顶部液体形态

    Figure 10.  Liquid morphology of disc top at different time

  • [1] GIANFRANCESCO A, TURCHIULI C, FLICK D, et al.CFD modeling and simulation of maltodextrin solutions spray drying to control stickiness[J].Food and Bioprocess Technology, 2010, 3(6):946-955. doi: 10.1007/s11947-010-0352-2
    [2] LI X H, ZONG L W, JIN X T.Recent progress of spray drying in China[J].Drying Technology, 1999, 17(9):1747-1757.
    [3] JIN Y, CHEN X D.A three-dimensional numerical study of the gas/particle interactions in an industrial-scale spray dryer for milk powder production[J].Drying Technology, 2009, 27(10):1018-1027. doi: 10.1080/07373930903203588
    [4] SENUMA Y, HILBORN J G.High speed imaging of drop formation from low viscosity liquids and polymer melts in spinning disk atomization[J].Polymer Engineering and Science, 2002, 42(5):969-982. doi: 10.1002/(ISSN)1548-2634
    [5] SOMA T, KATAYAMA T, TANIMOTO J, et al.Liquid film flow on a high speed rotary bell-cup atomizer[J].International Journal of Multiphase Flow, 2015, 70:96-103. doi: 10.1016/j.ijmultiphaseflow.2014.11.013
    [6] ELLWOOD K R J, TARDIFF J L, ALAIE S M.A simplified analysis method for correlating rotary atomizer performance on droplet size and coating appearance[J].Journal of Coatings Technology and Research, 2014, 11(3):303-309. doi: 10.1007/s11998-013-9535-x
    [7] COLBERT S A, CAIRNCROSS R A.A discrete droplet transport model for predicting spray coating patterns of an electrostatic rotary atomizer[J].Journal of Electrostatics, 2006, 64(3-4):234-246. doi: 10.1016/j.elstat.2005.06.003
    [8] DOMNICK J, SCHEIBE A, YE Q.The simulation of the electrostatic spray painting process with high-speed rotary bell atomizers.Part Ⅰ:Direct charging[J].Particle & Particle Systems Characterization, 2005, 22(2):141-150. https://www.mendeley.com/catalogue/simulation-electrostatic-spray-painting-process-highspeed-rotary-bell-atomizers-part-i-direct-chargi/
    [9] DOMNICK J, SCHEIBE A, YE Q.The simulation of electrostatic spray painting process with high-speed rotary bell atomizers.Part Ⅱ:External charging[J].Particle & Particle Systems Characterization, 2006, 23(5):408-416. http://www.deepdyve.com/lp/wiley/the-simulation-of-electrostatic-spray-painting-process-with-high-speed-sDSb1vXY7I
    [10] WANG D, LING X, PENG H.Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process[J].Applied Thermal Engineering, 2015, 84:437-447. doi: 10.1016/j.applthermaleng.2015.03.003
    [11] WANG D, PENG H, LING X.Ligament mode disintegration of liquid film at the rotary disk rim in waste heat recovery process of molten slag[J].Energy Procedia, 2014, 61:1824-1829. doi: 10.1016/j.egypro.2014.12.222
    [12] LIU J, YU Q, LI P, et al.Cold experiments on ligament formation for blast furnace slag granulation[J].Applied Thermal Engineering, 2012, 40:351-357. doi: 10.1016/j.applthermaleng.2012.01.063
    [13] MIZUOCHI T, AKIYAMA T, SHIMADA T, et al.Feasibility of rotary cup atomizer for slag granulation[J].ISIJ International, 2001, 41(12):1423-1428. doi: 10.2355/isijinternational.41.1423
    [14] ZHANG H, WANG H, ZHU X, et al.A review of waste heat recovery technologies towards molten slag in steel industry[J].Applied Energy, 2013, 112:956-966. doi: 10.1016/j.apenergy.2013.02.019
    [15] MORISHITA T.A development of the fuel atomizing device utilizing high rotational speed: ASME 81-GT-180[R].New York: ASME, 1981.
    [16] CHOI S M, JANG S H.Spray behavior of the rotary atomizer with in-line injection orifices[J].Atomization and Sprays, 2010, 20(10):863-875. doi: 10.1615/AtomizSpr.v20.i10
    [17] DAHM W J A, PATEL P R, LERG B H.Experimental visualizations of liquid breakup regimes in fuel slinger atomization[J].Atomization and Sprays, 2006, 16(8):933-944. doi: 10.1615/AtomizSpr.v16.i8
    [18] WERNER D.Fundamental analysis of liquid atomization by fuel slingers in small gas turbines: AIAA-2002-3183[R].Reston: AIAA, 2002.
    [19] TESKE M E, THISTLE H W, HEWITT A J, et al.Rotary atomizer drop size distribution database[J].Transactions of the ASABE, 2005, 48(3):917-921. doi: 10.13031/2013.18496
    [20] BAGHERPOUR A, MCLEOD I M, HOLLOWAY A G L.Droplet sizing and velocimetry in the wake of rotary-cage atomizers[J].Transactions of the ASABE, 2012, 55(3):759-772. doi: 10.13031/2013.41508
    [21] CRAIG I P, HEWITT A, TERRY H.Rotary atomiser design requirements for optimum pesticide application efficiency[J].Crop Protection, 2014, 66:34-39. doi: 10.1016/j.cropro.2014.08.012
    [22] GEBHARDT M R.Rotary disk atomization[J].Weed Technology, 1988, 1(2):106-113. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023727449/
    [23] MATSUMOTO S, SAITO K, TAKASHIMA Y.Phenomenal transition of liquid atomization from disk[J].Journal of Chemical Engineering of Japan, 1974, 7(1):13-19. doi: 10.1252-jcej.16.338/
    [24] TEUNOU E, PONCELET D.Rotary disc atomisation for microencapsulation applications-Prediction of the particle trajectories[J].Journal of Food Engineering, 2005, 71(4):345-353. https://www.sciencedirect.com/science/article/abs/pii/S0260877404005370
    [25] LIU J, YU Q, GUO Q.Experimental Investigation of liquid disintegration by rotary cups[J].Chemical Engineering Science, 2012, 73:44-50. doi: 10.1016/j.ces.2012.01.010
    [26] AHMED M, YOUSSEF M S.Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics[J].Chemical Engineering Science, 2014, 107:149-157. doi: 10.1016/j.ces.2013.12.004
    [27] WANG D, LING X, PENG H, et al.Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge[J].Industrial & Engineering Chemistry Research, 2016, 34(55):9267-9275. https://www.onacademic.com/detail/journal_1000039550307710_b5da.html
    [28] FROST A R.Rotary atomization in the ligament formation mode[J].Journal of Agricultural Engineering Research, 1981, 26(1):63-78. doi: 10.1016/0021-8634(81)90127-X
    [29] HINZE J O, MILBORN H.Atomization of liquids by means of a rotating cup[J].Journal of Applied Mechanics-Transactions of the ASME, 1950, 17(2):145-153.
  • 加载中
图(10)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  90
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-26
  • 录用日期:  2018-12-29
  • 网络出版日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答