留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型路径共享真时延波束合成架构的设计

党艳杰 梁煜 张为

党艳杰, 梁煜, 张为等 . 一种新型路径共享真时延波束合成架构的设计[J]. 北京航空航天大学学报, 2019, 45(6): 1266-1272. doi: 10.13700/j.bh.1001-5965.2018.0626
引用本文: 党艳杰, 梁煜, 张为等 . 一种新型路径共享真时延波束合成架构的设计[J]. 北京航空航天大学学报, 2019, 45(6): 1266-1272. doi: 10.13700/j.bh.1001-5965.2018.0626
DANG Yanjie, LIANG Yu, ZHANG Weiet al. Design of a new path-sharing true-time-delay beamformer architecture[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1266-1272. doi: 10.13700/j.bh.1001-5965.2018.0626(in Chinese)
Citation: DANG Yanjie, LIANG Yu, ZHANG Weiet al. Design of a new path-sharing true-time-delay beamformer architecture[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1266-1272. doi: 10.13700/j.bh.1001-5965.2018.0626(in Chinese)

一种新型路径共享真时延波束合成架构的设计

doi: 10.13700/j.bh.1001-5965.2018.0626
基金项目: 

国家重点研发计划 2016YFE0100400

详细信息
    作者简介:

    党艳杰  女, 硕士研究生。主要研究方向:射频集成电路设计

    梁煜  男, 博士, 副教授, 硕士生导师。主要研究方向:射频集成电路设计、数字信号处理

    张为  男, 博士, 教授, 博士生导师。主要研究方向:射频集成电路设计、数字信号处理与图像分析与模式识别

    通讯作者:

    张为, E-mail: tjuzhangwei@tju.edu.cn

  • 中图分类号: TN927;TN432

Design of a new path-sharing true-time-delay beamformer architecture

Funds: 

National Key R & D Program of China 2016YFE0100400

More Information
  • 摘要:

    为满足宽带天线通信系统多输入多输出的要求,提出了一种新型路径共享真时延波束合成架构。通过真时延单元提供的一定延时差弥补信号到达天线的时间差,合成多路信号来提高输出能力。相比于传统的波束合成架构,该架构通过真时延单元共享,节省芯片面积。该架构具有中心对称性与可扩展性,可支持2M个输入和2K个输出。基于HHNEC 0.18 μm CMOS工艺设计四入四出波束合成器单元,对提出的架构加以验证。仿真结果表明,工作频带为0.5~1.5 GHz,延时分辨率为80 ps、最大延时为720 ps。在天线间距为10.5 cm的情况下,能够提供±43°和±13°四个扫描角度。输入输出回波损耗≤-10 dB,带内整体增益为约26 dB,增益平坦度≤3 dB。版图面积(包括I/O焊盘和ESD)为3.69 mm×3.62 mm。

     

  • 图 1  新型波束合成架构

    Figure 1.  New beamformer architecture

    图 2  新型波束合成架构信号流向图

    Figure 2.  Signal flow diagram of new beamformer architecture

    图 3  新型波束合成架构的可拓展性

    Figure 3.  Extensibility of new beamformer architecture

    图 4  低噪声放大器半电路等效电路图

    Figure 4.  Equivalent half circuit diagram of low noise amplifier

    图 5  低噪声放大器的仿真结果

    Figure 5.  Simulation results of low noise amplifier

    图 6  真时延架构和等效网络

    Figure 6.  True-time-delay architecture and equivalent network

    图 7  缓冲放大器电路图

    Figure 7.  Circuit diagram of buffer amplifier

    图 8  缓冲放大器的仿真结果

    Figure 8.  Simulation results of buffer amplifier

    图 9  波束合成器版图

    Figure 9.  Layout of beamformer

    图 10  波束合成器S11S22仿真结果

    Figure 10.  Simulated S11 and S22 of beamformer

    图 11  波束合成器总增益仿真结果

    Figure 11.  Simulated total gain of beamformer

    图 12  波束合成器群延时仿真结果

    Figure 12.  Simulated group delay of beamformer

    图 13  波束合成器方向性仿真结果

    Figure 13.  Simulated direction of beamformer

    表  1  本文与其他文献的波束合成器性能对比

    Table  1.   Performance comparison with other references of beamformer

    参数 文献[6] 文献[9] 文献[16] 文献[17] 本文
    工艺 0.18 μm CMOS 0.13 μm CMOS 0.13 μm CMOS 0.14 μm CMOS 0.18 μm CMOS
    带宽/GHz 0.35~1 1~15 0.1 ~2 1~2.5 0.5~1.5
    延时通道 4 4 1 4 4
    输出端口个数 4 1 1 1 4
    延时范围/ps 0~720 0~225 250~1 700 0~550 0~720
    分辨率/ps 80 15 10 14 80
    增益/dB 18.5 24 0.6 12* 26
    功耗/mW 234 555 112~364 450 544
    面积/mm2 20.0 9.9 0.6 1 13.4
    真时延技术 LC LC Gm-C Gm-C LC
    注:*表示每通道增益。
    下载: 导出CSV
  • [1] DUATRE V C, DRUMMOND M V, NOGUEIRA R N.Coherent photonic true-time-delay beamforming system for a phased array antenna receiver[C]//International Conference on Transparent Optical Networks.Piscataway, NJ: IEEE Press, 2016: 1-5. https://ieeexplore.ieee.org/document/7550663
    [2] MOSLLRMI S, WELKER R, KITCHEN J.Wide band programmable true time delay block for phased array antenna applications[C]//Dallas Circuits and Systems Conference.Piscataway, NJ: IEEE Press, 2017. https://ieeexplore.ieee.org/document/7847754
    [3] 肖永轩, 薛永, 曾小金.GEO移动通信卫星合成多波束天线仿真分析[J].航天器工程, 2010, 19(3):74-79. doi: 10.3969/j.issn.1673-8748.2010.03.011

    XIAO Y X, XUE Y, ZENG X J.Simulation analysis of composite multi-beam antenna on the GEO mobile communication satellite[J].Spacecraft Engineering, 2010, 19(3):74-79(in Chinese). doi: 10.3969/j.issn.1673-8748.2010.03.011
    [4] MOALLEMI S, WELKER R, KITCHEN J.Wide band programmable true time delay block for phased array antenna applications[C]//Dallas Circuits and Systems Conference.Piscataway, NJ: IEEE Press, 2017. https://ieeexplore.ieee.org/document/7847754
    [5] AHMADI P, BELOSTOTSKI L, MADANAYAKE A, et al.0.96-to-5.1GHz 4-element spatially analog IIR-enhanced delay-and-sum beamformer[C]//International Microwave Symposium.Piscataway, NJ: IEEE Press, 2017: 1610-1613. https://ieeexplore.ieee.org/document/8058942
    [6] LIU Y, ZHANG W, LIU Y.A fully integrated 4-channel beamformer based on TTD phased array in 0.18μm CMOS[J].Microelectronics Journal, 2018, 80:81-86. doi: 10.1016/j.mejo.2018.07.003
    [7] ARIYARATHNA V, UDAYANGA N, MADANAYAKE A, et al.Design methodology of an analog 9-beam squint-free wideband IF multi-beamformer for mmW applications[C]//Moratuwa Engineering Research Conference.Piscataway, NJ: IEEE Press, 2017: 236-240. https://ieeexplore.ieee.org/document/7980488
    [8] 高浩, 周以国, 郭征.L波段宽带相控阵天线真延时网络的设计[J].电子元件与材料, 2013, 32(6):14-17. doi: 10.3969/j.issn.1001-2028.2013.06.004

    GAO H, ZHOU Y G, GUO Z.Design of a true time delay network for the L-band wideband phased array antenna[J].Electronic Components and Materials, 2013, 32(6):14-17(in Chinese). doi: 10.3969/j.issn.1001-2028.2013.06.004
    [9] CHU T S, RODERICK J, HASHEMI H.An integrated ultra-wideband timed array receiver in 0.13μm CMOS using a path-sharing true time delay architecture[J].IEEE Journal of Solid-State Circuits, 2007, 42(12):2834-2850. doi: 10.1109/JSSC.2007.908746
    [10] CHU T S, HASHEMI H.A CMOS UWB camera with 7×7 simultaneous active pixels[C]//International Solid-State Circuits Conference-Digest of Technical Papers.Piscataway, NJ: IEEE Press, 2008: 120-121. https://ieeexplore.ieee.org/document/4523086
    [11] CHU T S, HASHEMI H.True-time-delay-based multi-beam arrays[J].IEEE Transactions on Microwave Theory & Techniques, 2013, 61(8):3072-3082. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230602086/
    [12] CHU T S, HASHEMI H.A true time-delay-based bandpass multi-beam array at mm-waves supporting instantaneously wide bandwidths[C]//International Solid-State Circuits Conference.Piscataway, NJ: IEEE Press, 2010: 38-39. https://ieeexplore.ieee.org/document/5434060
    [13] MA L, WANG Z, XU J, et al.A 500 kHz-1.4 GHz push-pull differential noise cancellation LNA[C]//IEEE International Conference on Communication Software and Networks.Piscataway, NJ: IEEE Press, 2015: 182-185. https://ieeexplore.ieee.org/document/7296150
    [14] BRUCCOLERI F, KLUMPERINK E A M, NAUTA B.Wide-band CMOS low-noise amplifier exploiting thermal noise canceling[J].IEEE Journal of Solid-State Circuits, 2004, 39(2):275-282. doi: 10.1109/JSSC.2003.821786
    [15] 邵翔鹏, 张万荣, 丁春宝, 等.基于噪声抵消技术的超宽带低噪声放大器[J].电子器件, 2015(1):74-77. doi: 10.3969/j.issn.1005-9490.2015.01.017

    SHAO X P, ZHANG W R, DING C B, et al.An ultra-wideband low noise amplifier based on noise cancellation technique[J].Chinese Journal of Electron Devices, 2015(1):74-77(in Chinese). doi: 10.3969/j.issn.1005-9490.2015.01.017
    [16] MONDAL I, KRISHNAPURA N.A 2 GHz bandwidth, 0.25~1.7 ns true-time-delay element using a variable-order all-pass filter architecture in 0.13μm CMOS[J].IEEE Journal of Solid-State Circuits, 2017, 52(8):2180-2193. doi: 10.1109/JSSC.2017.2693229
    [17] GARAKOUI S K, KLUMPERINK E A M, NAUTA B, et al.Compact cascadable gm-C all-pass true time delay cell with reduced delay variation over frequency[J].IEEE Journal of Solid-State Circuits, 2015, 50(3):693-703. doi: 10.1109/JSSC.2015.2390214
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  116
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-31
  • 录用日期:  2018-12-29
  • 网络出版日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答