留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国CNG/汽油两用燃料汽车全生命周期评价

胡守信 李兴虎

胡守信, 李兴虎. 中国CNG/汽油两用燃料汽车全生命周期评价[J]. 北京航空航天大学学报, 2019, 45(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2018.0659
引用本文: 胡守信, 李兴虎. 中国CNG/汽油两用燃料汽车全生命周期评价[J]. 北京航空航天大学学报, 2019, 45(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2018.0659
HU Shouxin, LI Xinghu. Full life cycle assessment of CNG/gasoline bi-fuel vehicle in China[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2018.0659(in Chinese)
Citation: HU Shouxin, LI Xinghu. Full life cycle assessment of CNG/gasoline bi-fuel vehicle in China[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2018.0659(in Chinese)

中国CNG/汽油两用燃料汽车全生命周期评价

doi: 10.13700/j.bh.1001-5965.2018.0659
基金项目: 

国家重点研发计划 2017YFB0103402

详细信息
    作者简介:

    胡守信  男, 硕士研究生。主要研究方向:汽车生命周期评价、汽车节能减排技术

    李兴虎  男, 博士, 教授, 博士生导师。主要研究方向:汽车环境保护技术、新型汽车动力及内燃机燃烧

    通讯作者:

    李兴虎, E-mail: lxh@buaa.edu.cn

  • 中图分类号: U469.7

Full life cycle assessment of CNG/gasoline bi-fuel vehicle in China

Funds: 

National Key R & D Program of China 2017YFB0103402

More Information
  • 摘要:

    基于GaBi软件建立了压缩天然气(CNG)/汽油两用燃料汽车全生命周期评价模型,利用该模型分析了两用燃料汽车从原材料获取到报废回收各阶段的能耗和排放,以及全生命周期能耗和排放对CNG-汽油使用里程比、整车总使用里程和电力结构的敏感性。研究结果表明:全生命周期内,使用阶段能耗和污染物排放最多,占全生命周期的50%以上;主要污染物为CO、NOx和SO2等;CNG/汽油两用燃料汽车在成本较低的情况下可有效降低环境影响,但发展CNG专用汽车则对节能减排更为有利;实施报废汽车回收利用、增大CNG使用里程比、提高利用可再生能源发电的比例可有效降低全生命周期的能耗和排放。

     

  • 图 1  CNG/汽油两用燃料汽车全生命周期评价系统边界

    Figure 1.  Full life cycle assessment system boundary of CNG/gasoline bi-fuel vehicle

    图 2  全生命周期矿产资源消耗

    Figure 2.  Mineral resource consumption in full life cycle

    图 3  全生命周期化石能源消耗

    Figure 3.  Fossil energy consumption in full life cycle

    图 4  各阶段环境影响归一化结果

    Figure 4.  Environment effect normalization results of each phase

    图 5  不同CNG-汽油使用里程比下的环境影响综合值

    Figure 5.  Comprehensive environmental impact value under different CNG-gasoline mileage ratios

    图 6  整车总使用里程对化石能源消耗和环境的影响

    Figure 6.  Impact of total mileage on fossil energy consumption and environment

    图 7  2017—2050年电力结构对应的环境影响综合值

    Figure 7.  Comprehensive environmental impact value corresponding to electric power structure in 2017—2050

    表  1  汽车各部分材料组成比例

    Table  1.   Material composition ratio of each part of vehicle

    汽车主体[10] 蓄电池[10] CNG供气系统[16]
    材料 比例/% 材料 比例/% 材料 比例/%
    62.3 69.0 66.7
    铸铁 10.9 硫酸 7.9 玻璃纤维 25.0
    铸铝 4.6 聚丙烯 6.1 树脂 8.3
    锻铝 2.2 玻璃纤维 2.1
    1.9 14.1
    玻璃 2.9 其他 0.8
    橡胶 2.3
    平均塑料 11.1
    其他 1.8
    下载: 导出CSV

    表  2  汽车主要零部件制造阶段电能消耗[17]

    Table  2.   Electrical energy consumption of vehicle main components during manufacturing phase[17]

    部件 质量/kg 电能/MJ
    CNG供气系统 70.0 366
    蓄电池 16.3 18.1
    发动机 125.4 1 395
    车身 384.6 1480
    73.9 15.6
    差速器 24.9 183.4
    变速器 87.5 606.3
    制动系统 38.1 140
    转向系统 22.2 142
    悬架系统 40.8 1.99
    车轮 41.3 29.7
    轮胎 40.8 95.9
    玻璃 39.9 128
    仪表板 24 50.6
    下载: 导出CSV

    表  3  两种燃料的气体污染物排放率[20-21]

    Table  3.   Exhaust emission ratio using two fuels[20-21]

    g/km
    燃料 CO2 CO NOx THC
    汽油 171 5.05 0.35 0.16
    CNG 121 1.24 0.44 0.32
    下载: 导出CSV

    表  4  全生命周期各阶段能耗和排放

    Table  4.   Energy consumption and emission of each phase in full life cycle

    阶段 原油/MJ 原煤/
    MJ
    天然气/
    MJ
    总能耗/
    MJ
    CO2/
    kg
    CO/
    kg
    NOx/
    kg
    SOx/
    kg
    NMVOC/
    kg
    CH4/
    kg
    PM2.5/
    kg
    PM10/
    kg
    原材料获取 8 435.14 49 564.6 11 343.4 86 500 9 706.8 227.9 17.5 22.4 2.7 24.4 2.1 4.7
    零部件制造 278.317 13 176.6 930.58 14 900 1 151.0 1.4 3.0 2.6 0.3 3.1 0.6 1.4
    整车涂装总装 415.334 21 280 340.17 22 900 2 131.2 2.5 4.7 6.1 2.2 6.0 1.5 3.4
    使用维修 199 365 30 079.8 636 356 945 000 47 649.24 670.9 158.4 24.24 128.52 130.0 2.52 5.16
    报废回收 -2 586.2 -9 813.9 -1 110.4 -13 300 -1 243.2 -5.8 -2.0 -2.8 -0.2 5.9 -0.2 -0.6
    总计 205 907.591 104 287.1 647 859.75 1 060 000 59 395.04 896.9 181.6 52.54 133.52 169.4 6.52 14.06
    下载: 导出CSV

    表  5  全生命周期各阶段特征化结果

    Table  5.   Characterization results of each phase in full life cycle

    阶段 ADP(e)
    (Sb-Eq/kg)
    ADP(f)/
    (104MJ)
    GWP
    (CO2-Eq/kg)
    AP(SO2-Eq/kg) EP(Phosphate-Eq/kg) POCP(Ethene-Eq/kg) ODP(R11-Eq/
    10-9kg)
    原材料获取 0.168 8.65 10 400 35.90 2.47 8.82 1.22
    零部件制造 0.000 212 1.49 1 240 4.63 0.42 0.44 0.353
    整车涂装总装 0.000 336 2.29 2 310 9.70 0.67 1.35 0.729
    使用维修 0.044 0 94.5 51 168.0 108.82 21.36 44.88 1.05
    报废回收 -0.054 0 -1.33 -1 060 -4.34 -0.04 -0.49 -0.254
    下载: 导出CSV

    表  6  各阶段环境影响归一化结果

    Table  6.   Environment impact normalization results of each phase

    类别 原材料获取阶段 零部件制造阶段 整车涂装总装阶段 使用维修阶段 报废回收阶段
    GWP 6.8×10-11 8.1×10-12 1.5×10-11 3.7×10-10 -7.0×10-12
    AP 2.7×10-11 3.5×10-12 7.3×10-12 1.0×10-10 -3.3×10-12
    EP 1.4×10-12 2.3×10-13 3.8×10-13 1.2×10-11 -2.1×10-14
    POCP 4.3×10-11 2.1×10-12 6.6×10-12 2.3×10-10 -2.4×10-12
    ODP 1.5×10-18 4.3×10-19 8.8×10-19 3.5×10-18 -3.1×10-19
    下载: 导出CSV

    表  7  2014—2050年电力结构[25]

    Table  7.   Electric power structure in 2014—2050[25]

    %
    年份 水电 火电 核电 风电 光电
    2014 18.74 75.76 2.35 2.75 0.40
    2015 19.44 73.68 2.94 3.19 0.75
    2016 19.51 71.85 3.54 4.00 1.10
    2017 18.59 70.99 3.87 4.73 1.82
    2020 18.77 61.59 6.68 9.36 3.60
    2035 15.99 35.20 7.12 33.77 7.92
    2050 15.16 14.95 7.60 44.51 17.78
    下载: 导出CSV
  • [1] HAO H, LIU Z, ZHAO F, et al.Natural gas as vehicle fuel in China:A review[J].Renewable & Sustainable Energy Reviews, 2016, 62:521-533. http://www.sciencedirect.com/science/article/pii/S1364032116301253
    [2] LARS R, MOHAMMED H, SYED A, et al.A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city[J].Energy Policy, 2013, 52(3):453-461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96aa7f60e68c00eb07b921ca4ceb3d20
    [3] MIERLO J V, MESSAGIE M, RANGARAJU S.Comparative environmental assessment of alternative fueled vehicles using a life cycle assessment[J].Transportation Research Procedia, 2017, 25:3439-3449. http://www.sciencedirect.com/science/article/pii/S2352146517305513
    [4] 翟君, 冯立岩, 王猛, 等.气体燃料发动机发展对中国温室气体减排贡献的生命周期分析[J].中国环境科学, 2015, 35(1):62-71. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201501009

    ZHAI J, FENG L Y, WANG M, et al.Life-cycle analysis of contribution of developing gas engines to GHG emissions reduction in China[J].China Environmental Science, 2015, 35(1):62-71(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zghjkx201501009
    [5] 杨烜.基于GREET的汽车代用燃料生命周期评价[D].西安: 长安大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-11941-2009211559.htm

    YANG X.Lifecycle assessment of automobile alternative fuel based on GREET[D].Xi'an: Chang'an University, 2007(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-11941-2009211559.htm
    [6] 王寿兵, 林宗虎, 张旭, 等.上海市柴油和CNG公交车生命周期成本比较[J].复旦学报(自然科学版), 2007, 46(1):123-128. doi: 10.3969/j.issn.0427-7104.2007.01.022

    WANG S B, LIN Z H, ZHANG X, et al.Comparativestudies on life cycle costs (LCC) between diesel powered and compressed natural gas (CNG) powered bus in Shanghai city[J].Journal of Fudan University(Natural Science), 2007, 46(1):123-128(in Chinese). doi: 10.3969/j.issn.0427-7104.2007.01.022
    [7] ASHNANI M H M, MIREMADI T, JOHARI A, et al.Environmentalimpact of alternative fuels and vehicle technologies:A life cycle assessment perspective[J].Procedia Environmental Sciences, 2015, 30:205-210. doi: 10.1016/j.proenv.2015.10.037
    [8] MAARTEN M, FAYCAL-SIDDIKOU B, THIERRY C, et al.Arange-based vehicle life cycle assessment incorporating variability in the environmental assessment of different vehicle technologies and fuels[J].Energies, 2014, 7:1467-1482. doi: 10.3390/en7031467
    [9] HACKNEY J, NEUFVILLE R D.Life cycle model of alternative fuel vehicles:Emissions, energy, and cost trade-offs[J].Transportation Research, Part A (Policy and Practice), 2001, 35(3):243-266. doi: 10.1016/S0965-8564(99)00057-9
    [10] 李书华.电动汽车全生命周期分析及环境效益评价[D].长春: 吉林大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014268032.htm

    LI S H.Life cycle analysis and environmental benefit evaluation of electric vehicles[D].Changchun: Jilin University, 2014(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10183-1014268032.htm
    [11] 李兴福.基于GaBi软件的报废汽车生命周期评价研究[D].天津: 南开大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2002780

    LI X F.Lifecycle assessment of scrap vehicle based on GaBi[D].Tianjin: Nankai University, 2011(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2002780
    [12] 张雷, 刘志峰, 王进京.电动与内燃机汽车的动力系统生命周期环境影响对比分析[J].环境科学学报, 2013, 33(3):931-940. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201303038

    ZHANG L, LIU Z F, WANG J J.Comparative analysis of life cycle environmental impact between power system of electric and internal combustion engine vehicles[J].Acta Scientiae Circumstantiae, 2013, 33(3):931-940(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201303038
    [13] BUMHAM A, WANG M Q, WU Y.Development and applications of GREET 2.7-Thetransportation vehicle-cycle model: ANL/ESD/06-5[R].Argonne: Argonne National Laboratory, 2006. http://www.mendeley.com/catalog/development-applications-greet-27-transportation-vehiclecycle-model/
    [14] 王姗姗, 刘赛男, 王灿, 等.基于生命周期评价的河南省原铝生产环境影响分析[J].轻金属, 2018(3):1-7. http://d.old.wanfangdata.com.cn/Periodical/qjs201803001

    WANG S S, LIU S N, WANG C, et al.Analysis on the environment impact of primary aluminum production in Henan based on life cycle assessment[J].Light Metals, 2018(3):1-7(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/qjs201803001
    [15] 万腾方, 戴方钦, 雷体新.基于生命周期评价方法的武钢钢铁产品环境影响评估[J].工业安全与环保, 2018, 44(2):72-76. doi: 10.3969/j.issn.1001-425X.2018.02.019

    WAN T F, DAI F Q, LEI T X.Environmental impact assessment of WISCO products based on life cycle[J].Industrial Safety and Environmental Protection, 2018, 44(2):72-76(in Chinese). doi: 10.3969/j.issn.1001-425X.2018.02.019
    [16] 陈康.含缺陷CNG-2气瓶安全分析与试验研究[D].广州: 华南理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10561-1016737417.htm

    CHEN K.Safety analysis and experimental study of CNG-2 cylinder containing defects[D].Guangzhou: South China University of Technology, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10561-1016737417.htm
    [17] 张磊.基于GaBi4的电动汽车生命周期评价研究[D].合肥: 合肥工业大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1886859

    ZHANG L.Lifecycle evaluation of electric vehicle based on GaBi4[D].Hefei: Hefei University of Technology, 2011(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1886859
    [18] PAPASAVVA S, KIA S, CLAYA J, et al.Life cycle environmental assessment of paint processes[J].Journal of Coatings Technology, 2002, 74(925):65-76. doi: 10.1007/BF02720151
    [19] 张燕平, 徐彦峰, 孙明烨.LNG和CNG供应工艺生命周期能耗分析[C]//中国城市燃气学会LNG专业委员会2009年煤层气液化主题年会.北京: 中国土木工程学会, 2009: 41-47. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY200910004007.htm

    ZHAO Y P, XU Y F, SUN M Y.Energy consumption analysis of LNG and CNG supply process life cycle[C]//China Gas Association Professional Committee of LNG Coalbed Methane Liquefaction Theme Annual Meeting.Beijing: China Civil Engineering Society, 2009: 41-47(in Chinese). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY200910004007.htm
    [20] 解淑霞, 胡京南, 鲍晓峰, 等.天然气-汽油双燃料车实际道路排放特性研究[J].环境科学学报, 2011, 31(11):2347-2353. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201111003

    XIE S X, HU J N, BAO X F, et al.Actual road emission characteristics of natural gas-gasoline dual fuel vehicles[J].Acta Scientiae Circumstantiae, 2011, 31(11):2347-2353(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201111003
    [21] 钱芳.CNG/汽油双燃料出租车排放特性研究[D].南京: 东南大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016755806.htm

    QIAN F.Study on emission characteristics of CNG/gasoline dual-fuel taxi[D].Nangjing: Southeast University, 2015(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10286-1016755806.htm
    [22] ZACKRISSON M, AVELLAN L, ORLENIUS J.Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-Critical issues[J].Journal of Cleaner Production, 2010, 18(15):1519-1529. doi: 10.1016/j.jclepro.2010.06.004
    [23] 王琢璞, 温宗国.废铅酸电池回收制取再生铅合金技术的生命周期评价[J].环境科学学报, 2018, 38(3):1245-1255. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201803047

    WANG Z P, WEN Z G.Life cycle assessment of regeneration of lead alloy from waste lead-acid batteries[J].Acta Scientiae Circumstantiae, 2018, 38(3):1245-1255(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201803047
    [24] 邓南圣, 王小兵.生命周期评价[M].北京:化学工业出版社, 2003:234-235.

    DENG N S, WANG X B.Life cycle assessment[M].Beijing:Chemical Industry Press, 2003:234-235(in Chinese).
    [25] 国家可再生能源中心.美丽中国2050年的能源经济生态系统[R/OL].(2018-04-04)[2018-11-08].http://boostre.cnrec.org.cn/wp-content/uploads/2018/04/Beautiful-China-2050-CN.pdf.

    China National Renewable Energy Centre.2050 energy economic ecosystem in China[R/OL].(2018-04-04)[2018-11-08].http://boostre.cnrec.org.cn/wp-content/uploads/2018/04/Beautiful-China-2050-CN.pdf(in Chinese).
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  732
  • HTML全文浏览量:  69
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-16
  • 录用日期:  2019-01-04
  • 网络出版日期:  2019-07-20

目录

    /

    返回文章
    返回
    常见问答