留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉积环境下气膜冷却效率的实验

杨晓军 于天浩 崔莫含 刘智刚

杨晓军, 于天浩, 崔莫含, 等 . 沉积环境下气膜冷却效率的实验[J]. 北京航空航天大学学报, 2019, 45(8): 1681-1690. doi: 10.13700/j.bh.1001-5965.2018.0697
引用本文: 杨晓军, 于天浩, 崔莫含, 等 . 沉积环境下气膜冷却效率的实验[J]. 北京航空航天大学学报, 2019, 45(8): 1681-1690. doi: 10.13700/j.bh.1001-5965.2018.0697
YANG Xiaojun, YU Tianhao, CUI Mohan, et al. Experiment on gas film cooling efficiency in environment of deposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1681-1690. doi: 10.13700/j.bh.1001-5965.2018.0697(in Chinese)
Citation: YANG Xiaojun, YU Tianhao, CUI Mohan, et al. Experiment on gas film cooling efficiency in environment of deposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1681-1690. doi: 10.13700/j.bh.1001-5965.2018.0697(in Chinese)

沉积环境下气膜冷却效率的实验

doi: 10.13700/j.bh.1001-5965.2018.0697
基金项目: 

国家自然科学基金民航联合基金 U1633113

详细信息
    作者简介:

    杨晓军  男, 博士, 副教授。主要研究方向:发动机内部复杂流动换热

    于天浩  男, 硕士研究生。主要研究方向:涡轮叶片颗粒物沉积

    通讯作者:

    杨晓军, E-mail: xiaojunyoung@hotmail.com

  • 中图分类号: V231.1

Experiment on gas film cooling efficiency in environment of deposition

Funds: 

National Natural Science Foundation of China and Civil Aviation Administration of China U1633113

More Information
  • 摘要:

    为了研究燃气涡轮叶片表面污染物沉积对气膜冷却的影响,通过将熔融石蜡喷入到小型风洞中,来模拟真实涡轮中的污染物,用平板近似代替涡轮叶片,在高温主流和低温冷流掺混的情况下,观察不同孔径和粗糙度对实验件表面颗粒物沉积的影响,以及在石蜡沉积后气膜冷却效果的变化趋势。结果表明,相同实验条件下,随着孔径的增大,气膜冷却效率逐渐增大,孔径为10 mm时的冷却效率比5 mm时的高6%左右,同时,平板表面的石蜡沉积逐渐减少,厚度相差0.15~0.20 mm;随着平板表面粗糙度的增加,气膜冷却效率逐渐下降,而石蜡沉积逐渐增多;较石蜡颗粒沉积前,沉积后的气膜冷却效率有较大的下降,效率相差5%左右。

     

  • 图 1  实验装置示意图

    Figure 1.  Sketch map of experimental device

    图 2  实验段示意图

    Figure 2.  Sketch map of experimental section

    图 3  不同孔径射流孔板示意图

    Figure 3.  Sketch map of different aperture jet pore plates

    图 4  不同粗糙度的砂纸表面

    Figure 4.  Different roughness on surface of sandpaper

    图 5  红外热像仪温度标定曲线

    Figure 5.  Calibration curve of infrared thermography

    图 6  电子显微镜下石蜡颗粒尺寸分布

    Figure 6.  Paraffin particle size distribution under electron microscope

    图 7  无气膜冷却下石蜡沉积随时间的增长图像

    Figure 7.  Growing image of paraffin deposition over time without gas film cooling

    图 8  沉积质量随时间的变化

    Figure 8.  Deposition quality varying with time

    图 9  不同孔径下气膜冷却平板表面的石蜡沉积覆盖

    Figure 9.  Paraffin deposition coverage on gas film cooling flat plate surfaces under different aperture sizes

    图 10  不同孔径下气膜孔下游中线上的石蜡沉积厚度

    Figure 10.  Paraffin deposition thickness on downstream midline of gas film holes under different aperture sizes

    图 11  不同孔径下气膜冷却平板表面沉积前后的红外分布

    Figure 11.  Infrared distribution of gas film cooling flat plate surfaces before and after deposition under different aperture sizes

    图 12  不同孔径下气膜孔下游中线上的气膜冷却效率曲线

    Figure 12.  Gas film cooling efficiency curves downstream midline of gas film holes under different aperture sizes

    图 13  不同粗糙度下气膜冷却平板表面的石蜡沉积覆盖

    Figure 13.  Paraffin deposition coverage on gas film cooling flat plate surfaces under different roughness

    图 14  不同粗糙度下气膜孔下游中线上的石蜡沉积厚度

    Figure 14.  Paraffin deposition thickness on downstream midline of gas film holes under different roughness

    图 15  不同粗糙度下气膜冷却平板表面沉积前后的红外分布

    Figure 15.  Infrared distribution of gas film cooling flat plate surfaces before and after deposition under different roughness

    图 16  不同粗糙度下气膜孔下游中线上的气膜冷却效率曲线

    Figure 16.  Gas film cooling efficiency curves downstream midline of gas film holes under different roughness

    表  1  颗粒物性和缩放参数对照

    Table  1.   Particle physical properties and contrast of scaling parameters

    参数 发动机 实验
    颗粒直径/μm 0.1~10 1~200
    颗粒密度/(kg·m-3) 1 980[17] 900
    颗粒速度(m·s-1) 93[16] 3.5
    动力黏度/(kg·(m ·s)-1) 5.55×10-5 1.82×10-5
    气膜孔直径/mm 0.5 10
    熔解潜热/(J·kg-1) 650 000[18] 234 720
    比热容(J·(kg·K)-1) 730[19] 2 090
    颗粒固化温度/K 1 533[20] 331.15
    主流温度/K 1 500[21] 333.15
    颗粒初始温度/K 1 593[21] 373.15
    颗粒行程/m 0.26 1.5
    Stk 0.004~40 0.001~40
    TSP 0.012~1.2 >1
    下载: 导出CSV
  • [1] WALSH P M, SAYRE A N, LOEHDEN D O, et al.Deposition of bituminous coal ash on an isolated heat exchanger tube:Effects of coal properties on deposit growth[J].Progress in Energy and Combustion Science, 1990, 16(4):327-345. doi: 10.1016/0360-1285(90)90042-2
    [2] WENGLARZ R A, FOX R G.Physical aspects of deposition from coal-water fuels under gas turbine conditions[J].Journal of Engineering for Gas Turbines and Power, 1990, 112(1):9-14. http://cn.bing.com/academic/profile?id=97b519c33b69cd694bda9bc4bfe5e06c&encoded=0&v=paper_preview&mkt=zh-cn
    [3] BONS J P, CROSBY J, WAMMACK J E, et al.High pressure turbine deposition in land based gas turbines from various synfuels[J].Journal of Engineering for Gas Turbines & Power, 2007, 129(1):135-143. http://cn.bing.com/academic/profile?id=43c0a9d30f2f0ab1e3907f50f5f1a365&encoded=0&v=paper_preview&mkt=zh-cn
    [4] CROSBY J M, LEWIS S, BONS J P, et al.Effects of particle size, gas temperature and metal temperature on high pressure turbine deposition in land based gas turbines from various synfuels[C]//ASME Turbo Expo 2007: Power for Land, Sea, and Air.New York: ASME, 2007: 1365-1376. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1602398
    [5] AI W, MURRAY N, FLETCHER T H, et al.Deposition near film cooling holes on a high pressure turbine vane[J].Journal of Turbomachinery, 2012, 134(4):041013. doi: 10.1115/1.4003672
    [6] AI W, LAYCOCK R G, RAPPLEYE D S, et al.Effect of particle size and trench configuration on deposition from fine coal fly ash near film cooling holes[J].Energy & Fuels, 2009, 25(3):561-571. http://cn.bing.com/academic/profile?id=8dd4f769c69e6ae7b87996217999f5d7&encoded=0&v=paper_preview&mkt=zh-cn
    [7] HAMED A, TABAKOFF W C, WENGLARZ R V.Erosion and deposition in turbomachinery[J].Journal of Propulsion & Power, 2012, 22(2):350-360. http://cn.bing.com/academic/profile?id=d1200b0e1f26b31fc52fd6623849ca46&encoded=0&v=paper_preview&mkt=zh-cn
    [8] LAWSON S A, THOLE K A.Simulations of multiphase particle deposition on endwall film-cooling holes in transverse trenches[J].Journal of Turbomachinery, 2012, 134(5):051040. doi: 10.1115/1.4004756
    [9] ALBERT J E, BOGARD D G.Experimental simulation of contaminant deposition on a film cooled turbine airfoil leading edge[J].Journal of Turbomachinery, 2012, 134(5):051014. doi: 10.1115/1.4003964
    [10] PRENTER R, WHITAKER S M, AMERI A, et al.The effects of slot film cooling on deposition on a nozzle guide vane[C]//ASME Turbo Expo 2014: Turbine Technical Conference and Exposition.New York: ASME, 2014: V03AT03A017-V03AT03A017. https://asmedigitalcollection.asme.org/GT/proceedings/GT2014/45653/V03AT03A017/241937
    [11] WHITAKER S M, PRENTER R, BONS J P.The effect of freestream turbulence on deposition for nozzle guide vanes[J].Journal of Turbomachinery, 2015, 137(12):121001. doi: 10.1115/1.4031447
    [12] 周君辉, 张靖周.涡轮叶栅内粒子沉积特性的数值研究[J].航空学报, 2013, 34(11):2492-2499. http://d.old.wanfangdata.com.cn/Periodical/hkxb201311007

    ZHOU J H, ZHANG J Z.Numerical investigation on particle deposition characteristic inside turbine cascade[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2492-2499(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201311007
    [13] 李勇, 李静, 胡鹏飞, 等.汽轮机静叶栅表面颗粒沉积特性数值模拟研究[J].汽轮机技术, 2014, 56(6):401-405. doi: 10.3969/j.issn.1001-5884.2014.06.001

    LI Y, LI J, HU P F, et al.Numerical simulation of particle deposition characteristics on surface of steam turbine stator cascade[J].Turbine Technology, 2014, 56(6):401-405(in Chinese). doi: 10.3969/j.issn.1001-5884.2014.06.001
    [14] KOCH C C, SMITH L H.Loss sources and magnitudes in axial-flow compressors[J].Journal of Engineering for Gas Turbines & Power, 1976, 98(3):411-424. doi: 10.1115-1.3446202/
    [15] DAVIDSON F T, KISTENMACHER D A, BOGARD D G, et al.A study of deposition on a turbine vane with a thermal barrier coating and various film cooling geometries[J].Journal of Turbomachinery, 2014, 136(4):041009. doi: 10.1115/1.4024885
    [16] LAWSON S A, THOLE K A.Simulations of multiphase particle deposition on endwall film-cooling[J].Journal of Turbomachinery, 2012, 134(1):011003. doi: 10.1115/1.4002962
    [17] BONS J P, CROSBY J, WAMMACK J E, et al.High-pressure turbine deposi tion in land-based gas turbines from various synfuels[J].Journal of Engineering for Gas Turbines & Power, 2007, 129(1):135-143. http://cn.bing.com/academic/profile?id=43c0a9d30f2f0ab1e3907f50f5f1a365&encoded=0&v=paper_preview&mkt=zh-cn
    [18] LI R, WANG L, YANG T, et al.Investigation of MSWI fly ash melting characteristic by DSC-DTA[J].Waste Management, 2007, 27(10):1383-1392. doi: 10.1016/j.wasman.2006.11.017
    [19] KRISHNAIAH S, SINGH D N.Determination of thermal properties of some supplementary cementing materials used in cement and concrete[J].Construction and Building Materials, 2006, 20(3):193-198. doi: 10.1016/j.conbuildmat.2004.10.001
    [20] WANG Q, TIAN S, WANG Q, et al.Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace[J].Journal of Hazardous Materials, 2008, 160(2-3):376-381. doi: 10.1016/j.jhazmat.2008.03.043
    [21] DENNIS R A, SHELTON W W, LE P.Development of baseline performance values for turbines in existing IGCC applications[C]//ASME Turbo Expo 2007: Power for Land, Sea, and Air.New York: ASME, 2007: 1017-1049. https://www.researchgate.net/publication/267500606_Development_of_Baseline_Performance_Values_for_Turbines_in_Existing_IGCC_Applications
    [22] 刘晓红, 罗翔, 陶智.大小孔交替排列对气膜冷却效率的影响[J].北京航空航天大学学报, 2010, 36(11):1271-1274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201011003

    LIU X H, LUO X, TAO Z.The effect of alternate arrangement of small and small holes on film cooling efficiency[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11):1271-1274(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201011003
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  17
  • PDF下载量:  564
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 录用日期:  2019-03-22
  • 网络出版日期:  2019-08-20

目录

    /

    返回文章
    返回
    常见问答