留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电液负载敏感位置伺服系统自抗扰控制方法

刘华 汪成文 郭新平 赵斌 霍鹏飞

刘华, 汪成文, 郭新平, 等 . 电液负载敏感位置伺服系统自抗扰控制方法[J]. 北京航空航天大学学报, 2020, 46(11): 2131-2139. doi: 10.13700/j.bh.1001-5965.2019.0569
引用本文: 刘华, 汪成文, 郭新平, 等 . 电液负载敏感位置伺服系统自抗扰控制方法[J]. 北京航空航天大学学报, 2020, 46(11): 2131-2139. doi: 10.13700/j.bh.1001-5965.2019.0569
LIU Hua, WANG Chengwen, GUO Xinping, et al. Active disturbance rejection control method for position servo system based on electro-hydraulic load sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2131-2139. doi: 10.13700/j.bh.1001-5965.2019.0569(in Chinese)
Citation: LIU Hua, WANG Chengwen, GUO Xinping, et al. Active disturbance rejection control method for position servo system based on electro-hydraulic load sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2131-2139. doi: 10.13700/j.bh.1001-5965.2019.0569(in Chinese)

电液负载敏感位置伺服系统自抗扰控制方法

doi: 10.13700/j.bh.1001-5965.2019.0569
基金项目: 

国家自然科学基金 51605322

国家自然科学基金 51505316

山西省重点研发计划 201903D121069

山西省重点研发计划 201803D121098

山西省回国留学人员科研资助项目 2019-001

山西省回国留学人员科研资助项目 2017-033

流体动力与机电系统国家重点实验室开放基金 GZKF-201720

流体动力与机电系统国家重点实验室开放基金 GZKF-201815

详细信息
    作者简介:

    刘华  男, 硕士研究生。主要研究方向:电液伺服控制

    汪成文  男, 博士, 副教授, 硕士生导师。主要研究方向:电液伺服控制

    通讯作者:

    汪成文, E-mail: cwwang@yeah.net

  • 中图分类号: TH137

Active disturbance rejection control method for position servo system based on electro-hydraulic load sensing

Funds: 

National Natural Science Foundation of China 51605322

National Natural Science Foundation of China 51505316

Key Research and Development Project of Shanxi Province 201903D121069

Key Research and Development Project of Shanxi Province 201803D121098

Research Project Supported by Shanxi Scholarship Council of China 2019-001

Research Project Supported by Shanxi Scholarship Council of China 2017-033

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems GZKF-201720

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems GZKF-201815

More Information
  • 摘要:

    针对电液负载敏感系统中泵阀控制的耦合问题,提出了一种基于自抗扰算法的解耦控制方法。首先,根据系统原理建立了负载敏感系统的状态空间模型。其次,针对阀控和泵控子系统分别设计了位置自抗扰控制器(ADRC)和压力自抗扰控制器,将2个系统间的动态耦合作用以及外部干扰和不确定性视作总扰动进行估计并给予补偿。最后,基于AMESim和MATLAB联合仿真平台进行了仿真分析。结果表明:所提的控制方法能够消除阀控子系统和泵控子系统的强耦合作用,提高系统的控制精度和鲁棒性。另外,在动态性能和节能效率方面与纯阀控和泵控系统进行对比分析,仿真结果表明:基于自抗扰控制的负载敏感系统的动态性能优于泵控系统,系统能效相对于阀控系统也有较大提升。

     

  • 图 1  电液负载敏感位置伺服系统结构

    Figure 1.  Structure of electro-hydraulic load sensingposition servo system

    图 2  自抗扰控制器结构

    Figure 2.  Structure of ADRC

    图 3  负载敏感系统控制框图

    Figure 3.  Control block diagram of load sensing system

    图 4  一阶压力自抗扰控制器结构

    Figure 4.  Structure of first-order pressure ADRC

    图 5  二阶位置自抗扰控制器结构

    Figure 5.  Structure of second-order position ADRC

    图 6  MATLAB/Simulink和AMESim联合仿真模型

    Figure 6.  MATLAB/Simulink and AMESim co-simulation model

    图 7  无干扰力情况下的正弦响应

    Figure 7.  Sinusoidal response without disturbing force

    图 8  加入正弦干扰力的正弦响应

    Figure 8.  Sinusoidal response with sinusoidal disturbing force

    图 9  参数发生变化后的正弦响应

    Figure 9.  Sinusoidal response after parameter variation

    图 10  3种系统对比仿真结果

    Figure 10.  Comparison and simulation results of three systems

    表  1  系统仿真参数

    Table  1.   System simulation parameters

    参数 数值
    Pr/Pa 0
    Ap/m2 6.4×10-4
    Cpl/m3·s-1·Pa-1 8.33×10-12
    m/kg 10
    B/(N·(m·s-1)) 500
    Dp/(m3·r-1) 2×10-5
    ρ/(kg·m-3) 850
    βe/bar 7 000
    p 20
    ωpo 1 000
    ωpc 500
    bv 7
    ωvo 900
    ωpo 300
    注:1bar=100kPa。
    下载: 导出CSV
  • [1] PENCELLI M, VILLA R, ARGIOLAS A, et al.Accurate position control for hydraulic servomechanisms[C]//ISARC Proceedings of the International Symposium on Automation and Robotics in Construction.Edmonton: IAARC Publications, 2019: 250-257.
    [2] GUO K, WEI J H, FANG J F, et al.Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer[J].Mechatronics, 2015, 27:47-56. doi: 10.1016/j.mechatronics.2015.02.003
    [3] 汪成文, 尚耀星, 焦宗夏, 等.阀控电液位置伺服系统非线性鲁棒控制方法[J].北京航空航天大学学报, 2014, 40(12):1736-1740. doi: 10.13700/j.bh.1001-5965.2013.0752

    WANG C W, SHANG Y X, JIAO Z X, et al.Nonlinear robust control of valve controlled electro-hydraulic position servo system[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12):1736-1740(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0752
    [4] WANG C W, QUAN L, JIAO Z X, et al.Nonlinear adaptive control of hydraulic system with observing and compensating mismatching uncertainties[J].IEEE Transactions on Control Systems Technology, 2017, 26(3):927-938. http://ieeexplore.ieee.org/document/7929376/
    [5] 彭辉, 王军政, 沈伟, 等.带补偿因子的双模糊控制在电液伺服阀控非对称缸系统上的应用研究[J].机械工程学报, 2017, 53(24):184-192. http://www.cnki.com.cn/Article/CJFDTotal-JXXB201724023.htm

    PENG H, WANG J Z, SHEN W, et al.Double fuzzy control with compensating factor for electronic-hydraulic servo valve-controlled system[J].Journal of Mechanical Engineering, 2017, 53(24):184-192(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXXB201724023.htm
    [6] 王玄, 陶建峰.泵控非对称液压缸系统高精度位置控制方法[J].浙江大学学报(工学版), 2016, 50(4):597-602. http://www.cnki.com.cn/Article/CJFDTotal-ZDZC201604001.htm

    WANG X, TAO J F.Precision position control of pump controlled asymmetric cylinder[J].Journal of Zhejiang University(Engineering Science), 2016, 50(4):597-602(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZDZC201604001.htm
    [7] TAO J, WANG X, XIONG Z, et al.Modelling and simulation of unidirectional proportional pump-controlled asymmetric cylinder position control system with model predictive control algorithm[C]//IEEE International Conference on Aircraft Utility Systems.Piscataway: IEEE Press, 2016: 408-413.
    [8] BA D X, AHN K K, TRUONG D Q, et al.Integrated model-based backstepping control for an electro-hydraulic system[J].International Journal of Precision Engineering and Manufacturing, 2016, 17(5):565-577. doi: 10.1007/s12541-016-0069-x
    [9] KETELSEN S, SCHMIDT L, DONKOV V H, et al.Energy saving potential in knuckle boom cranes using a novel pump controlled cylinder drive[J].Modeling, Identification and Control, 2018, 39(2):73-89. doi: 10.4173/mic.2018.2.3
    [10] SHEN W, PANG Y, JIANG J H.Robust controller design of the integrated direct drive volume control architecture for steering systems[J].ISA Transactions, 2018, 78:116-129. doi: 10.1016/j.isatra.2017.05.008
    [11] 王军政, 赵江波, 汪首坤.电液伺服技术的发展与展望[J].液压与气动, 2014(5):1-12. http://journal.yeyanet.com.cn/EN/abstract/abstract10.shtml

    WANG J Z, ZHAO J B, WANG S K.The development and future trends of electro-hydraulic servo technology[J].Chinese Hydraulics & Pneumatics, 2014(5):1-12(in Chinese). http://journal.yeyanet.com.cn/EN/abstract/abstract10.shtml
    [12] 黄泽平, 娄贺, 王纪森.基于负载敏感技术的新型EHA设计与仿真分析[J].液压气动与密封, 2012, 32(7):31-33. http://www.cnki.com.cn/Article/CJFDTotal-YYQD201207009.htm

    HUANG Z P, LOU H, WANG J S.Design and simulation analysis of a new type EHA dased on load-sensing technology[J].Hydraulics Pneumatics & Seals, 2012, 32(7):31-33(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-YYQD201207009.htm
    [13] 袁士豪, 殷晨波, 刘世豪.机械负载敏感定量泵系统性能分析[J].农业工程学报, 2013, 29(13):38-45. http://d.wanfangdata.com.cn/Periodical/nygcxb201313006

    YUAN S H, YIN C B, LIU S H.Performance analysis of machinery load sensitive quantitative pump system[J].Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13):38-45(in Chinese). http://d.wanfangdata.com.cn/Periodical/nygcxb201313006
    [14] 张哲.基于变频调节的快锻液压机泵阀复合控制研究[D].秦皇岛: 燕山大学, 2014.

    ZHANG Z.The study on accumulator fast forcing subsystem of 0.6 mn sinusoidal pump-controlled press[D].Qinhuangdao: Yanshan University, 2014(in Chinese).
    [15] 谢文.串联式泵阀协控电液伺服控制系统研究[D].北京: 北京理工大学, 2015.

    XIE W.Research on serial type pump-valve coordinated electric-hydraulic servo control system[D].Beijing: Beijing Institute of Technology, 2015(in Chinese).
    [16] 徐兵, 程敏, 杨华勇, 等.带旁路压力补偿的电液流量匹配系统[J].浙江大学学报(工学版), 2015, 49(9):1762-1767. http://www.cqvip.com/QK/90076A/20159/666357201.html

    XU B, CHENG M, YANG H Y, et al.Electrohydraulic flow matching system with bypass pressure compensation[J].Journal of Zhejiang University(Engineering Science), 2015, 49(9):1762-1767(in Chinese). http://www.cqvip.com/QK/90076A/20159/666357201.html
    [17] 程敏, 于今, 丁孺琦, 等.基于流量前馈与压力反馈复合控制的电液负载敏感系统[J].机械工程学报, 2018, 54(20):262-270. http://d.wanfangdata.com.cn/periodical/jxgcxb201820031

    CHENG M, YU J, DING R Q, et al.Electrohydraulic load sensing system via compound control of flow feedforward and pressure feedback[J].Journal of Mechanical Engineering, 2018, 54(20):262-270(in Chinese). http://d.wanfangdata.com.cn/periodical/jxgcxb201820031
    [18] CHO S H, NOSKIEVI P.Position tracking control with load-sensing for energy-saving valve-controlled cylinder system[J].Journal of Mechanical Science and Technology, 2012, 26(2):617-625. doi: 10.1007/s12206-011-1032-5
    [19] MERRITT H E.Hydraulic control systems[M].New York:John Wiley & Sons, 1967:90-100.
    [20] DJUROVIC M, HELDUSER S.New control strategies for electrohydraulic load-sensing[C]//Bath Workshop on Power Transmission and Motion Control.Dresden: Professional Engineering Publishing, 2004: 201.
    [21] WANG C, QUAN L, ZHANG S, et al.Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory[J].ISA Transactions, 2017, 67:455-465. doi: 10.1016/j.isatra.2017.01.009
    [22] HAN J.From PID to active disturbance rejection control[J].IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906. doi: 10.1109/TIE.2008.2011621
    [23] GAO Z.Scaling and bandwidth-parameterization based controller-tuning[C]//Proceedings of the 2003 American Control Conference.Piscataway: IEEE Press, 2003: 4989-4996.
    [24] HUANG Y, XUE W C.Active disturbance rejection control:Methodology and theoretical analysis[J].ISA Transations, 2014, 53:963-976. doi: 10.1016/j.isatra.2014.03.003
    [25] 韩京清.自抗扰控制技术:估计补偿不确定因素的控制技术[M].北京:国防工业出版社, 2008:60-70.

    HAN J Q.Active disturbance rejiection control technique-The technique for estimating and compensating the uncertainties[M].Beijing:National Defense Industry Press, 2008:60-70(in Chinese).
    [26] HERBST G.A simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners[J].Electronics, 2013, 2(3):246-279. http://www.oalib.com/paper/3090677
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  135
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-02
  • 录用日期:  2019-12-27
  • 网络出版日期:  2020-11-20

目录

    /

    返回文章
    返回
    常见问答