留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多级次孔结构ZnMn2O4微球负极的研究

任衍彪 张世超 张临财 何小武 赵金光

任衍彪, 张世超, 张临财, 等 . 多级次孔结构ZnMn2O4微球负极的研究[J]. 北京航空航天大学学报, 2020, 46(2): 259-265. doi: 10.13700/j.bh.1001-5965.2019.0190
引用本文: 任衍彪, 张世超, 张临财, 等 . 多级次孔结构ZnMn2O4微球负极的研究[J]. 北京航空航天大学学报, 2020, 46(2): 259-265. doi: 10.13700/j.bh.1001-5965.2019.0190
REN Yanbiao, ZHANG Shichao, ZHANG Lincai, et al. Hierarchical porous ZnMn2O4 microsphere anode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 259-265. doi: 10.13700/j.bh.1001-5965.2019.0190(in Chinese)
Citation: REN Yanbiao, ZHANG Shichao, ZHANG Lincai, et al. Hierarchical porous ZnMn2O4 microsphere anode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 259-265. doi: 10.13700/j.bh.1001-5965.2019.0190(in Chinese)

多级次孔结构ZnMn2O4微球负极的研究

doi: 10.13700/j.bh.1001-5965.2019.0190
基金项目: 

中国博士后科学基金 2018M632635

枣庄学院博士研究基金 2018BS056

国家电网公司科技项目 52170217000L

详细信息
    作者简介:

    任衍彪  男,博士, 讲师。主要研究方向:纳米能源材料及电极催化剂

    张世超 男,博士,教授,博士生导师。主要研究方向:锂二次电池电极材料

    张临财  男,博士, 副教授。主要研究方向:生物基材料

    何小武  男, 博士。主要研究方向:荧光材料。E-mail:hexw@semi.ac.cn

    赵金光  男,博士,研究员。主要研究方向:电网储能

    通讯作者:

    何小武. E-mail:hexw@semi.ac.cn

  • 中图分类号: TB321

Hierarchical porous ZnMn2O4 microsphere anode

Funds: 

China Postdoctoral Science Foundation 2018M632635

the Doctoral Research Foundation of Zaozhuang University 2018BS056

the State Grid Company Research Program of Science and Technology 52170217000L

More Information
  • 摘要:

    利用水热法合成了Zn-Mn氧化物前驱体,在温度400、500、600、700℃下,空气气氛中煅烧前驱体,以此来制备纳米片组装成的分级多孔结构的ZnMn2O4微球。其中,在500℃空气中煅烧前驱体制备的ZnMn2O4(ZMO-500)微球具有丰富的多级次孔结构,其作为锂离子电池负极材料,在500 mA/g的电流密度下,ZMO-500微球负极材料循环500次以后仍具有1 132 mAh/g高的放电比容量。ZMO-500负极材料优异的电化学性能得益于其分级多孔结构,不仅可以增加电极和电解质之间的接触面积以促进锂离子的迁移,而且还为循环过程中电极体积膨胀提供足够的缓冲空间。

     

  • 图 1  Zn-Mn氧化物前驱体在低倍和高倍下的SEM照片

    Figure 1.  Low-magnification and high-magnification SEM images of precursor of Zn-Mn oxides

    图 2  Zn-Mn氧化物前驱体XRD图谱和DSC-TG曲线

    Figure 2.  XRD pattern and DSC-TG curves of precursor of Zn-Mn oxides

    图 3  所制备的ZMO的XRD图谱

    Figure 3.  XRD patterns of synthesized ZMO

    图 4  ZMO-500在低倍和高倍下的SEM照片, TEM和HRTEM照片,以及ZMO-500材料N2吸脱附曲线(插图为ZMO-500的孔径分布)

    Figure 4.  Low-magnification and high-magnification SEM images, TEM image and HRTEM image of ZMO-500, N2 adsorption/desorption isotherm of ZMO-500 (inset of ZMO-500 pore size distribution)

    图 5  3种样品的SEM照片

    Figure 5.  SEM images of three samples

    图 6  ZMO-500电极的CV曲线、放-充电曲线和循环性能

    Figure 6.  CV curves, discharge-charge curves and cycling performance of ZMO-500 electrode

    图 7  ZMO-400, ZMO-500, ZMO-600和ZMO-700在500 mA/g电流密度下的循环性能比较

    Figure 7.  Comparison of cycle performance among ZMO-400, ZMO-500, ZMO-600 and ZMO-700 at 500 mA/g

    图 8  不同循环次数下在中-高频ZMO-500电极的EIS数据(插图为放大图),及阻抗曲线的实部值与低频区角频率的倒数平方根关系曲线

    Figure 8.  EIS data and its enlargement (inset) at medium-high frequency region for different cycles, plot of real part of impedance as a function of reciprocal root square of lower angular frequencies

    图 9  ZMO-500电极在500 mA/g下循环500次以后低倍和高倍SEM照片

    Figure 9.  Low-magnification and high-magnification SEM images of ZMO-500 electrode after 500 cycles at 500 mA/g

    表  1  不同循环次数ZMO-500电极的Warburg阻抗系数和锂离子扩散系数

    Table  1.   Warburg impedance coefficient and lithium ion diffusion coefficient of ZMO-500 electrodes at different cycles

    循环次数 σ/(Ω·cm2·s-0.5) D/(cm2·s-1)
    第1次 36.17 1.70×10-14
    第50次 66.66 4.99×10-15
    第200次 36.37 1.68×10-14
    下载: 导出CSV
  • [1] DUNN B, KAMATH H, TARASCON J M.Electrical energy storage for the grid:A battery of choices[J].Science, 2011, 334(6058):928-935. doi: 10.1126/science.1212741
    [2] DENG Y, WAN L, XIE Y, et al.Recent advances in Mn-based oxides as anode materials for lithium ion batteries[J].RSC Advances, 2014, 4(45):23914-23935. doi: 10.1039/C4RA02686A
    [3] GOODENOUGH J B, KIM Y.Challenges for rechargeable Li batteries[J].Chemistry of Materials, 2010, 22:587-603. doi: 10.1021/cm901452z
    [4] ETACHERI V, MAROM R, ELAZARI R, et al.Challenges in the development of advanced Li-ion batteries:A review[J].Energy & Environmental Science, 2011, 4:3243-3262. http://cn.bing.com/academic/profile?id=9336c93993b62e6b13156ca5a66c0353&encoded=0&v=paper_preview&mkt=zh-cn
    [5] PATIL A, PATIL V, WOOK SHIM D, et al.Issue and challenges facing rechargeable thin film lithium batteries[J].Materials Research Bulletin, 2008, 43:1913-1942. doi: 10.1016/j.materresbull.2007.08.031
    [6] COURTEL F M, DUNCAN H, ABU-LEBDEH Y, et al.High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A=Co, Ni, and Zn)[J].Journal of Materials Chemistry, 2011, 21:10206-10218. doi: 10.1039/c0jm04465b
    [7] ZHAO Y, LI X, YAN B, et al.Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries[J].Advanced Energy Materials, 2016, 6(8):1502175. doi: 10.1002/aenm.201502175
    [8] ZHANG J, YU A, Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries[J].Science Bulletin, 2015, 60(9):823-838. doi: 10.1007/s11434-015-0771-6
    [9] GUO N, WEI X Q, DENG X L, et al.Synthesis and property of spinel porous ZnMn2O4 microspheres[J].Applied Surface Science, 2015, 356(30):1127-1134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8dfe7a6f40b9d2d88b7571c3122278ff
    [10] ZHANG T, GAO Y, YUE H H, et al.Convenient and high-yielding strategy for preparing nano-ZnMn2O4 as anode material in lithium-ion batteries[J].Electrochimica Acta, 2016, 198(20):84-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa8f13fa1ed3e5c927b1f8969e666894
    [11] ZHOU L, WU H B, ZHU T, et al.Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries[J].Journal of Materials Chemistry, 2012, 22:827-829. doi: 10.1039/C1JM15054E
    [12] FAN B, HU A, CHEN X S, et al.Hierarchical porous ZnMn2O4 microspheres as a high-performance anode for lithium-ion batteries[J].Electrochimica Acta, 2016, 213(20):37-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ffca34544ccb76ba112e6706b4f2867
    [13] ALFARUQI M H, RAI A K, MATHEW V, et al.Pyro-synthesis of nanostructured spinel ZnMn2O4/C as negative electrode for rechargeable lithium-ion batteries[J].Electrochimica Acta, 2015, 151(1):558-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20110d9aba818f3ad668bbf5a9606967
    [14] BAI Z, FAN N, SUN C, et al.Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries[J].Nanoscale, 2013, 5(6):2442-2447. doi: 10.1039/c3nr33211j
    [15] LIU Y, BAI J, MA X, et al.Formation of quasi-mesocrystal ZnMn2O4 twin-microspheres via an oriented-attachment for lithium-ion batteries[J].Journal of Materials Chemistry A, 2014, 2:14236. doi: 10.1039/C4TA02950J
    [16] WANG N, MA X, XU H, et al.Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries[J].Nano Energy, 2014, 6:193-199. doi: 10.1016/j.nanoen.2014.04.001
    [17] LI P, LIU J, LIU Y, et al.Three-dimensional ZnMn2O4/porous carbon framework from petroleum asphalt for high performance lithium-ion battery[J].Electrochimica Acta, 2015, 180(20):164-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=42a15ae0711f6fb60fb54471f5fd772e
    [18] ZHANG G, YU L, WU H B, et al.Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries[J].Advanced Materials, 2012, 24(34):4609-4613. doi: 10.1002/adma.201201779
    [19] CAI D, WANG D, HUANG H, et al.Rational synthesis of ZnMn2O4 porous spheres and graphene nanocomposite with enhanced performance for lithium-ion batteries[J].Journal of Materials Chemistry A, 2015, 3:11430-11436. doi: 10.1039/C5TA00539F
    [20] CHEN X, ZHANG Y, LIN H, et al.Porous ZnMn2O4 nanospheres:Facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery[J].Journal of Power Sources, 2016, 312(20):137-145. doi: 10.1021/nn9012675
    [21] LIU X, ZHANG S, XING Y, et al.MOF-derived, N-doped porous carbon coated graphene sheets as high-performance anodes for lithium-ion batteries[J].New Journal of Chemistry, 2016, 40(11):9679-9683. doi: 10.1039/C6NJ01896C
    [22] SUN H, XIN G, HU T, et al.High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries[J].Nature Communication, 2014, 31(5):4526-4529. http://cn.bing.com/academic/profile?id=171dfd5ce6da339123a51aff0f5877b3&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  709
  • HTML全文浏览量:  54
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-28
  • 录用日期:  2019-08-05
  • 网络出版日期:  2020-02-20

目录

    /

    返回文章
    返回
    常见问答