留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钇稳定二氧化锆火焰传感器的静态响应特性

徐汉卿 樊未军 张荣春 石强 覃文隆 冯健洧

徐汉卿, 樊未军, 张荣春, 等 . 钇稳定二氧化锆火焰传感器的静态响应特性[J]. 北京航空航天大学学报, 2020, 46(3): 524-531. doi: 10.13700/j.bh.1001-5965.2019.0267
引用本文: 徐汉卿, 樊未军, 张荣春, 等 . 钇稳定二氧化锆火焰传感器的静态响应特性[J]. 北京航空航天大学学报, 2020, 46(3): 524-531. doi: 10.13700/j.bh.1001-5965.2019.0267
XU Hanqing, FAN Weijun, ZHANG Rongchun, et al. Static response performance of yttria-stabilized zirconia based flame sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 524-531. doi: 10.13700/j.bh.1001-5965.2019.0267(in Chinese)
Citation: XU Hanqing, FAN Weijun, ZHANG Rongchun, et al. Static response performance of yttria-stabilized zirconia based flame sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 524-531. doi: 10.13700/j.bh.1001-5965.2019.0267(in Chinese)

钇稳定二氧化锆火焰传感器的静态响应特性

doi: 10.13700/j.bh.1001-5965.2019.0267
详细信息
    作者简介:

    徐汉卿, 男, 博士研究生。主要研究方向:燃烧室结构设计与燃烧性能监测

    樊未军, 男, 博士, 研究员, 博士生导师。主要研究方向:燃烧室结构设计与低污染燃烧技术

    张荣春, 男, 博士, 讲师。主要研究方向:燃烧室结构设计与高温升、低污染燃烧技术

    通讯作者:

    张荣春, E-mail: zhangrongchun@buaa.edu.cn

  • 中图分类号: V233.7

Static response performance of yttria-stabilized zirconia based flame sensor

More Information
  • 摘要:

    以钇稳定二氧化锆(YSZ)火焰传感器为研究对象,利用马弗炉,在873~1 523 K的温度范围内,测量了YSZ火焰传感器对温度的静态响应,获得并分析了传感器的静态校准曲线与静态响应特性。结果表明,YSZ火焰传感器的线性度为12.88%,24 V激励电压下的平均灵敏度为10.02 mV/K,迟滞与重复性指标分别为2.13%和2.22%,传感器间的互换度为1.22%。采用Boltzmann函数能够较为准确地拟合YSZ火焰传感器的静态校准曲线,误差小于±3.5%。YSZ火焰传感器的非线性特征明显,精密度与互换性良好,灵敏度较高,总体性能良好。相较于火焰检测中常用的热电偶和离子火焰传感器,YSZ火焰传感器对火焰温度的响应信号更为稳健,能够有效提高火焰检测的准确度与可靠性。

     

  • 图 1  YSZ热敏电阻实物图

    Figure 1.  Photo of YSZ thermistor

    图 2  YSZ火焰传感器的测量电路示意图

    Figure 2.  Schematic of measuring circuit of YSZ flame sensor

    图 3  试验系统示意图

    Figure 3.  Schematic of pilot system

    图 4  炉温控制逻辑图

    Figure 4.  Logic diagram of furnace temperature regulation

    图 5  YSZ火焰传感器静态响应特性试验数据

    Figure 5.  Experimental data of static response characteristics for YSZ flame sensor

    图 6  YSZ火焰传感器的静态校准曲线

    Figure 6.  Static calibration curve for YSZ flame sensor

    图 7  YSZ火焰传感器静态校准曲线的线性拟合

    Figure 7.  Linear fitting of static calibration curve for YSZ flame sensor

    图 8  YSZ火焰传感器的迟滞特性

    Figure 8.  Hysteresis characteristic of YSZ flame sensor

    图 9  YSZ火焰传感器的重复性

    Figure 9.  Repeatability of YSZ flame sensor

    图 10  YSZ火焰传感器的互换性

    Figure 10.  Interconvertibility of YSZ flame sensors

    图 11  YSZ火焰传感器静态校准曲线的拟合曲线

    Figure 11.  Fitted curve of static calibration curve for YSZ flame sensor

    表  1  马弗炉性能参数

    Table  1.   Performance parameters of muffle furnace

    参数 电压/V 功率/kW 温度/K
    数值 220 0~3 室温~1 573
    下载: 导出CSV

    表  2  静态校准曲线特征参数

    Table  2.   Characteristic parameters of static calibration curve

    参数 Tmin/K Umin/mV Tmax/K Umax/mV UF·S/mV
    数值 873 612.138 1 523 6 697.181 6 085.043
    下载: 导出CSV
  • [1] 章德龙.超超临界火电机组培训系列教材:锅炉分册[M].北京:中国电力出版社, 2013:43.

    ZHANG D L.Training materials for ultra-supercritical thermal power unit:Boiler[M].Beijing:China Electric Power Press, 2013:43(in Chinese).
    [2] 章素华.燃气轮机发电机组控制系统[M].北京:中国电力出版社, 2013:317-328.

    ZHANG S H.Control system for gas turbine generator unit[M].Beijing:China Electric Power Press, 2013:317-328(in Chinese).
    [3] 谢军.航空控制工程新装备与新技术[M].北京:航空工业出版社, 2002:192.

    XIE J.New equipment and technology for aero control engineering[M].Beijing:Aviation Industry Press, 2002:192(in Chinese).
    [4] DOCQUIER N, CANDEL S.Combustion control and sensors:A review[J].Progress in Energy and Combustion Science, 2002, 28(2):107-150. doi: 10.1016/S0360-1285(01)00009-0
    [5] BALLESTER J, GARCÍA-ARMINGOL T.Diagnostic techniques for the monitoring and control of practical flames[J].Progress in Energy and Combustion Science, 2010, 36(4):375-411. doi: 10.1016/j.pecs.2009.11.005
    [6] ROMERO C, LI X, KEYVAN S, et al.Spectrometer-based combustion monitoring for flame stoichiometry and temperature control[J].Applied Thermal Engineering, 2005, 25(5):659-676. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98c71c67998f48367a4e851dcade1235
    [7] MIYASATO M M, MCDONELL V G, SAMUELSEN G S.Active optimization of the performance of a gas-turbine combustor[J].Combustion Science and Technology, 2005, 177(9):1725-1745. doi: 10.1080/00102200590959396
    [8] XU L, YAN Y, CORNWELL S, et al.On-line fuel identification using digital signal processing and fuzzy inference techniques[J].IEEE Transactions on Instrumentation and Measurement, 2004, 53(4):1316-1320. doi: 10.1109/TIM.2004.830573
    [9] HUANG Y, YAN Y, RILEY G.Vision-based measurement of temperature distribution in a 500 kW model furnace using the two-colour method[J].Measurement:Journal of the International Measurement Confederation, 2000, 28(3):175-183. doi: 10.1016/S0263-2241(00)00010-5
    [10] KEARNEY S P.Hybrid fs/ps rotational cars temperature and oxygen measurements in the product gases of canonical flat flames[J].Combustion and Flame, 2015, 162(5):1748-1758. doi: 10.1016/j.combustflame.2014.11.036
    [11] RASMUSSEN C C, DHANUKA S K, DRISCOLL J F.Visualization of flameholding mechanisms in a supersonic combustor using PLIF[J].Proceedings of the Combustion Institute, 2007, 31(2):2505-2512.
    [12] GRISCH F, ATTAL-TRETOUT B, BRESSON A, et al.Investigation of a dynamic diffusion flame of H2 in air with laser diagnostics and numerical modeling[J].Combustion and Flame, 2004, 139(1):28-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f6e000d351520904c54f05ea33000920
    [13] BOLSHOV M A, KURITSYN Y A, ROMANOVSKII Y V.Tunable diode laser spectroscopy as a technique for combustion diagnostics[J].Spectrochimica Acta-Part B Atomic Spectroscopy, 2015, 106:45-66. doi: 10.1016/j.sab.2015.01.010
    [14] CLAUSSEN H, ULERICH N H, MOMIN Z, et al.Flame monitoring of a gas turbine combustor using a characteristic spectral pattern from a dynamic pressure sensor in the combustor: 9791150B2[P].2017-10-17.
    [15] CHORPENING B T, THORNTON J D, BENSON K J.Flame ionization sensor testing in a pressurized combustor[C]//Proceedings of the 4th IEEE Conference on Sensors 2005.Piscataway, NJ: IEEE Press, 2005: 987-990.
    [16] LI F Y, XU L J, DU M, et al.Ion current sensing-based lean blowout detection for a pulse combustor[J].Combustion and Flame, 2017, 176:263-271. doi: 10.1016/j.combustflame.2016.10.017
    [17] HU D, CAO Z, SUN S, et al.Dual-modality electrical tomography for flame monitoring[J].IEEE Sensors Journal, 2018, 18(21):8847-8854. doi: 10.1109/JSEN.2018.2868959
    [18] GARDINER D P, PUCHER G, ALLAN W D, et al.Flame-out detection for gas turbine engines based upon thermocouple signal analysis: GT2006-91080[R].New York: ASME, 2006.
    [19] ZHANG J, GUO X, JUNG Y G, et al.Lanthanum zirconate based thermal barrier coatings:A review[J].Surface and Coatings Technology, 2016, 323:18-29.
    [20] GAO J, DUAN F L, YU C, et al.Electrical Insulation of ceramic thin film on metallic aero-engine blade for high temperature sensor applications[J].Ceramics International, 2016, 42(16):19269-19275. doi: 10.1016/j.ceramint.2016.09.093
    [21] DUAN L, WENG H, JI Z, et al.A new high-temperature sensing device by making use of tbc thermistor for intelligent propulsion systems: AIAA-2018-5015[R].Reston: AIAA, 2018.
    [22] HU M, DUAN L, WENG H, et al.An easy way of high-temperature monitoring for intelligent propulsion systems via YSZ-based ceramic thermistor: AIAA-2018-4617[R].Reston: AIAA, 2018.
    [23] 徐汉卿, 樊未军, 张荣春, 等.基于钇稳定二氧化锆阻温特性的火焰传感器[J].推进技术, 2019, 40(8):1902-1911. http://d.old.wanfangdata.com.cn/Periodical/tjjs201908026

    XU H Q, FAN W J, ZHANG R C, et al.Flame sensor based on resistance-temperature characteristic of yttria-stabilized zirconia[J].Journal of Propulsion Technology, 2019, 40(8):1902-1911(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201908026
    [24] 熊姹, 范玮.应用燃烧诊断学[M].西安:西北工业大学出版社, 2014:73.

    XIONG C, FAN W.Applied combustion diagnostics[M].Xi'an:Northwestern Polytechnical University Press, 2014:73(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  33
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-31
  • 网络出版日期:  2020-03-20

目录

    /

    返回文章
    返回
    常见问答