留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MPC导引律的AUV路径跟踪和避障控制

姚绪梁 王晓伟

姚绪梁, 王晓伟. 基于MPC导引律的AUV路径跟踪和避障控制[J]. 北京航空航天大学学报, 2020, 46(6): 1053-1062. doi: 10.13700/j.bh.1001-5965.2019.0413
引用本文: 姚绪梁, 王晓伟. 基于MPC导引律的AUV路径跟踪和避障控制[J]. 北京航空航天大学学报, 2020, 46(6): 1053-1062. doi: 10.13700/j.bh.1001-5965.2019.0413
YAO Xuliang, WANG Xiaowei. Path following and obstacle avoidance control of AUV based on MPC guidance law[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1053-1062. doi: 10.13700/j.bh.1001-5965.2019.0413(in Chinese)
Citation: YAO Xuliang, WANG Xiaowei. Path following and obstacle avoidance control of AUV based on MPC guidance law[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1053-1062. doi: 10.13700/j.bh.1001-5965.2019.0413(in Chinese)

基于MPC导引律的AUV路径跟踪和避障控制

doi: 10.13700/j.bh.1001-5965.2019.0413
基金项目: 

国家自然科学基金 51279039

详细信息
    作者简介:

    姚绪梁  男, 博士, 教授, 博士生导师。主要研究方向:船舶控制、电力电子与电气传动

    王晓伟  男, 博士研究生, 讲师。主要研究方向:现代控制理论及应用、水下机器人运动控制

    通讯作者:

    王晓伟, E-mail:627382854@qq.com

  • 中图分类号: U675.5+5;V249.122+.3

Path following and obstacle avoidance control of AUV based on MPC guidance law

Funds: 

National Natural Science Foundation of China 51279039

More Information
  • 摘要:

    针对欠驱动自主水下航行器(AUV)的三维直线路径跟踪和避障控制,基于级联控制策略设计了运动学和动力学控制器。首先,在设计运动学控制器时考虑了纵倾和艏摇角速度存在的约束,应用模型预测控制(MPC)设计了最优导引律。然后,考虑了推进器转速和舵角的饱和,应用滑模控制(SMC)技术设计了动力学控制器,从而保证了系统的鲁棒性。最后,通过仿真实验与基于视线法(LOS)导引律的传统控制方法进行了对比。仿真结果表明:所提方法不仅可以改善欠驱动AUV对三维直线路径的跟踪效果,而且可以有效减少舵角的饱和现象。

     

  • 图 1  欠驱动AUV三维直线路径跟踪示意图

    Figure 1.  Schematic diagram of underactuated AUV 3D straight path following

    图 2  路径跟踪和避障仿真结果

    Figure 2.  Simulation results of path following and obstacle avoidance

    图 3  路径跟踪误差曲线

    Figure 3.  Path following error curves

    图 4  控制输入曲线

    Figure 4.  Control input curves

    图 5  速度曲线

    Figure 5.  Speed curves

    图 6  鲁棒项系数和滑模函数曲线

    Figure 6.  Robust term coefficients and sliding mode function curves

    表  1  路径点

    Table  1.   Waypoints m

    序号 ξ η ζ
    1 10 0 0
    2 10 25 3
    3 -40 25 9
    4 -40 -25 15
    5 10 -25 21
    6 60 -25 21
    7 110 25 21
    8 135 25 21
    9 135 -25 21
    10 85 -25 21
    下载: 导出CSV
  • [1] LEKKAS A M, FOSSEN T I.Minimization of cross-track and along-track errors for path tracking of marine underactuated vehicles[C]//2014 European Control Conference(ECC).Piscataway: IEEE Press, 2014: 3004-3010.
    [2] LEKKAS A M, FOSSEN T I.A time-varying lookahead distance guidance law for path following[J].IFAC Proceedings Volumes, 2012, 45(27):398-403. doi: 10.3182/20120919-3-IT-2046.00068
    [3] 陈霄, 刘忠, 张建强, 等.基于改进积分视线导引策略的欠驱动无人水面艇路径跟踪[J].北京航空航天大学学报, 2018, 44(3):489-499. doi: 10.13700/j.bh.1001-5965.2017.0192

    CHEN X, LIU Z, ZHANG J Q, et al.Path following of underactuated USV based on modified integral line-of-sight guidance strategies[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3):489-499(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0192
    [4] XU H, SOARES C G.Vector field path following for surface marine vessel and parameter identification based on LS-SVM[J].Ocean Engineering, 2016, 113:151-161. doi: 10.1016/j.oceaneng.2015.12.037
    [5] FOSSEN T I, PETTERSEN K Y, GALEAZZI R.Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces[J].IEEE Transactions on Control Systems Technology, 2015, 23(2):820-827. doi: 10.1109/TCST.2014.2338354
    [6] CAHARIJA W, PETTERSEN K Y, SØRENSEN A J, et al.Relative velocity control and integral line of sight for path following of autonomous surface vessels:Merging intuition with theory[J].Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2014, 228(2):180-191. doi: 10.1177/1475090213512293
    [7] FOSSEN T I, LEKKAS A M.Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents[J].International Journal of Adaptive Control and Signal Processing, 2017, 31(4):445-463. doi: 10.1002/acs.2550
    [8] 李娟, 边信黔, 熊华胜, 等.AUV的精确航迹跟踪系统的鲁棒控制[J].哈尔滨工业大学学报, 2013, 45(1):112-117. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201301021

    LI J, BIAN X Q, XIONG H S, et al.Robust control research for AUV trajectory control system[J].Journal of Harbin Institute of Technology, 2013, 45(1):112-117(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201301021
    [9] YAN Z P, YU H M, ZHANG W, et al.Globally finite-time stable tracking control of underactuated UUVs[J].Ocean Engineering, 2015, 107:132-146. doi: 10.1016/j.oceaneng.2015.07.039
    [10] 潘永平, 黄道平, 孙宗海.欠驱动船舶航迹Backstepping自适应模糊控制[J].控制理论与应用, 2011, 28(7):907-914. http://www.cnki.com.cn/Article/CJFDTotal-KZLY201107005.htm

    PAN Y P, HUANG D P, SUN Z H.Backstepping adaptive fuzzy control for track-keeping of underactuated surface vessels[J].Control Theory & Applications, 2011, 28(7):907-914(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KZLY201107005.htm
    [11] LIU C, ZOU Z J, YIN J C.Trajectory tracking of underactuated surface vessels based on neural network and hierarchical sliding mode[J].Journal of Marine Science and Technology, 2015, 20:322-330. doi: 10.1007/s00773-014-0285-y
    [12] OH S R, SUN J.Path following of underactuated marine surface vessels using line-of-sight based model predictive control[J].Ocean Engineering, 2010, 37(2-3):289-295. doi: 10.1016/j.oceaneng.2009.10.004
    [13] YAO X L, YANG G Y, PENG Y.Nonlinear reduced-order observer-based predictive control for diving of an autonomous underwater vehicle[J].Discrete Dynamics in Nature and Society, 2017:4394571. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c2ca5bd6e2bd055e1bdb696f9e54b40
    [14] ZHENG Z W, FEROSKHAN M.Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances[J].IEEE/ASME Transactions on Mechatronics, 2017, 22(6):2564-2575. doi: 10.1109/TMECH.2017.2756110
    [15] MOE S, PETTERSEN K Y.Set-based line-of-sight (LOS) path following with collision avoidance for underactuated unmanned surface vessel[C]//IEEE Mediterranean Conference on Control & Automation.Piscataway: IEEE Press, 2016: 402-409.
    [16] SHIM T, ADIREDDY G, YUAN H L.Autonomous vehicle collision avoidance system using path planning and model-predictive-control-based active front steering and wheel torque control[J].Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2012, 226(D6):767-778. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231353825/
    [17] PRESTERO T.Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[D].Cambridge: Massachusetts Institute of Technology, 2001: 12-112.
    [18] 段斐.微小型水下机器人运动仿真研究[D].哈尔滨: 哈尔滨工程大学, 2012: 11-80.

    DUAN F.Research on motion simulation for mini autonomous underwater vehicle[D].Harbin: Harbin Engineering University, 2012: 11-80(in Chinese).
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1267
  • HTML全文浏览量:  213
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-26
  • 录用日期:  2019-11-01
  • 网络出版日期:  2020-06-20

目录

    /

    返回文章
    返回
    常见问答