留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

翼伞充气过程的流固耦合方法数值仿真

张思宇 余莉 刘鑫

张思宇, 余莉, 刘鑫等 . 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6): 1108-1115. doi: 10.13700/j.bh.1001-5965.2019.0408
引用本文: 张思宇, 余莉, 刘鑫等 . 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6): 1108-1115. doi: 10.13700/j.bh.1001-5965.2019.0408
ZHANG Siyu, YU Li, LIU Xinet al. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1108-1115. doi: 10.13700/j.bh.1001-5965.2019.0408(in Chinese)
Citation: ZHANG Siyu, YU Li, LIU Xinet al. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1108-1115. doi: 10.13700/j.bh.1001-5965.2019.0408(in Chinese)

翼伞充气过程的流固耦合方法数值仿真

doi: 10.13700/j.bh.1001-5965.2019.0408
基金项目: 

国家自然科学基金 11972192

江苏高校优势学科建设工程 

详细信息
    作者简介:

    张思宇  男, 博士研究生。主要研究方向:流固耦合力学、飞行器安全救生及生命保障

    刘鑫:余莉  女, 博士, 教授, 博士生导师。主要研究方向:流固耦合力学、飞行器安全救生及生命保障、人机与环境工程

    通讯作者:

    余莉, E-mail:yuli_happy@163.com

  • 中图分类号: V244.21

Numerical simulation of parafoil inflation process based on fluid-structure interaction method

Funds: 

National Natural Science Foundation of China 11972192

the Priority Academic Program Development of Jiangsu Higher Education Institution 

More Information
  • 摘要:

    为研究冲压式翼伞折叠充气过程的流固耦合动力学特性,基于自由曲面变形理论建立了多气室冲压翼伞的展向折叠模型。流体域通过时步更新技术实现了随伞载系统运动,采用任意拉格朗日-欧拉(ALE)方法开展了翼伞非定常充气展开过程的非线性动力学数值计算,数值计算结果与空投试验结果具有较好的一致性。深入分析了翼伞充气过程中的三维外形及非定常流场分布情况,表明翼伞充气过程由于翼尖涡绕流,存在“翼尖上翘,中部凹陷”的翼伞尾流再附现象;各气室的充气规律关于中央气室对称;分析了翼伞气动特性的动态变化规律,充满后翼伞滑翔比稳定在2.24。上述研究为翼伞设计及开伞性能预测提供了一定的理论依据。

     

  • 图 1  FFD六面体控制晶格

    Figure 1.  FFD hexahedral control lattice

    图 2  流场域时间步更新

    Figure 2.  Time-step update of flow field

    图 3  冲压式翼伞结构示意图

    Figure 3.  Schematic diagram of rammed parafoil structure

    图 4  翼伞折叠模型

    Figure 4.  Folding model of parafoil

    图 5  流固耦合数值计算模型

    Figure 5.  Numerical calculation model of fluid-structure interaction

    图 6  数值计算结果与空投试验充满外形对比

    Figure 6.  Comparison of canopy shape between numerical calculation result and airdrop test

    图 7  开伞动载随时间的变化曲线

    Figure 7.  Curves of opening load over time

    图 8  充气过程翼伞外形变化(范式等效应力云图)

    Figure 8.  Parafoil shape changes during inflation process (von Mises equivalent stress contours)

    图 9  选取截面示意图

    Figure 9.  Schematic diagram of selected sections

    图 10  各截面的结构及流场变化

    Figure 10.  Structure and flow field changes of each section

    图 11  充气过程压力云图

    Figure 11.  Pressure contours of inflation process

    图 12  各气室充满时间和充满宽度

    Figure 12.  Inflation time and width of each air chamber

    图 13  充气过程的翼展变化

    Figure 13.  Changes in wingspan during inflation process

    图 14  气动特性参数的变化

    Figure 14.  Changes in aerodynamic characteristic parameter

    表  1  流固耦合过程的数值模型信息

    Table  1.   Numerical model information of fluid-structure interaction process

    参数 流场 伞衣 伞绳
    单元数量 806 868 28 885 1 749
    单元类型 Solid Shell Beam
    材料类型 Null Fabric Cable_Discrete_Beam
    密度/(kg·m-3) 1.2 533.8 462.0
    弹性模量/Pa 4.3×108 9.7×1010
    下载: 导出CSV

    表  2  网格无关性对比结果

    Table  2.   Comparison results of grid independence

    网格数量 最大开伞动载/N 误差/% 计算时长/h
    587 000 4 661.30 6.08 123
    849 000 4 760.10 4.09 172
    1 189 000 4 764.13 4.01 238
    注:文献[22]试验数据中,最大开伞动载为4 963.2 N。表中误差指文献[22]与本文最大开伞动载的误差。
    下载: 导出CSV
  • [1] PATEL S, HACKETT N, JORGENSEN D, et al.Qualification of the guided parafoil air delivery system-light(GPADS-Light): AIAA-97-1493[R].Reston: AIAA, 1997.
    [2] BENNETT T, FOX R.Design, development & flight testing of the NASA X-387500 ft2 parafoil recovery system: AIAA-2003-2107[R].Reston: AIAA, 2003.
    [3] SHAW D O.A parafoil-based, hybrid airship design for extended Martian exploration[C]//AIAA SPACE Forum.Reston: AIAA, 2016: 1-7.
    [4] PURVIS J W.Theoretical analysis of parachute inflation including fluid kinetics[J].Journal of Aircraft, 1982, 19(4):290-296. doi: 10.2514/3.57392
    [5] 潘星, 曹义华.降落伞开伞过程的多结点模型仿真[J].北京航空航天大学学报, 2008, 34(2):188-192. https://bhxb.buaa.edu.cn/CN/Y2008/V34/I02/188

    PAN X, CAO Y H.Simulation of parachute's opening process with multi-node model[J].Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(2):188-192(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2008/V34/I02/188
    [6] STEEVES E C, BENNEY R J, STEIN K R.A computational model that couples aerodynamic and structural dynamic behavior of parachutes during the opening process: NASA-ADA264115[R].Washingtong, D.C.: NASA, 1993.
    [7] YU L, MING X.Study on transient aerodynamic characteristics of parachute opening process[J].Acta Mechanica Sinica, 2007, 23(6):627-633. doi: 10.1007/s10409-007-0112-3
    [8] 彭勇, 张青斌, 秦子增.降落伞主充气阶段数值模拟[J].国防科技大学学报, 2004, 26(2):13-16. doi: 10.3969/j.issn.1001-2486.2004.02.004

    PENG Y, ZHANG Q B, QIN Z Z.Simulation of parachute final inflation phase[J].Journal of National University of Defense Technology, 2004, 26(2):13-16(in Chinese). doi: 10.3969/j.issn.1001-2486.2004.02.004
    [9] TAKIZAWA K, SPIELMAN T, MOORMAN C, et al.Fluid-structure interaction modeling of spacecraft parachutes for simulation-based design[J].Journal of Applied Mechanics, 2012, 79(1):010907. doi: 10.1115/1.4005070
    [10] STEIN K, BENNEY R, KALRO V, et al.Parachute fluid-structure interactions:3-D computation[J].Computer Methods in Applied Mechanics and Engineering, 2000, 190(3):373-386. http://cn.bing.com/academic/profile?id=b641c7d544c3e3d59057dee3b3df29d8&encoded=0&v=paper_preview&mkt=zh-cn
    [11] TEZDUYAR T, BEHR M, MITTAL S, et al.A new strategy for finite element computations involving moving boundaries and interfaces-The deforming-spatial-domain/space-time procedure:Ⅱ.Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders[J].Computer Methods in Applied Mechanics and Engineering, 1992, 94(3):353-371. doi: 10.1016/0045-7825(92)90060-W
    [12] KIM Y, PESKIN C S.2-D parachute simulation by the immersed boundary method[J].SIAM Journal on Scientific Computing, 2006, 28(6):2294-2312. doi: 10.1137/S1064827501389060
    [13] TUTT B, TAYLOR A.The use of LS-DYNA to simulate the inflation of a parachute canopy: AIAA-2005-1608[R].Reston: AIAA, 2005.
    [14] YU L, CHENG H, ZHAN Y N, et al.Study of parachute inflation process using fluid-structure interaction method[J].Chinese Journal of Aeronautics, 2014, 27(2):272-279. doi: 10.1016/j.cja.2014.02.021
    [15] 陆伟伟, 张红英, 连亮.大型翼伞的三维气动性能分析[J].航天返回与遥感, 2015, 36(3):1-10. doi: 10.3969/j.issn.1009-8518.2015.03.001

    LU W W, ZHANG H Y, LIAN L.A three-dimensional analysis on aerodynamic performance of a large parafoil[J].Spacecraft Recovery & Remote Sensing, 2015, 36(3):1-10(in Chinese). doi: 10.3969/j.issn.1009-8518.2015.03.001
    [16] 朱旭, 曹义华.翼伞平面形状对翼伞气动性能的影响[J].航空学报, 2011, 32(11):1998-2007. http://d.old.wanfangdata.com.cn/Periodical/hkxb201111005

    ZHU X, CAO Y H.Numerical simulation of platform geometry effect on parafoil aerodynamic performance[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(11):1998-2007(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201111005
    [17] FOGELL N A, SHERWIN S, COTTER C J, et al.Fluid-structure interaction simulation of the inflated shape of ram-air parachutes: AIAA-2013-1326[R].Reston: AIAA, 2013.
    [18] KALRO V, ALIABADI S, GARRARD W, et al.Parallel finite element simulation of large ram-air parachutes[J].International Journal for Numerical Methods in Fluids, 1997, 24(12):1353-1369. doi: 10.1002/(SICI)1097-0363(199706)24:12<1353::AID-FLD564>3.0.CO;2-6
    [19] 汪龙芳, 贺卫亮.基于索膜有限元模型的翼伞气动变形仿真[J].北京航空航天大学学报, 2017, 43(1):47-52. doi: 10.13700/j.bh.1001-5965.2016.0017

    WANG L F, HE W L.Parafoil aerodynamic deformation simulation based on cable-membrane finite element model[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):47-52(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0017
    [20] 张春, 曹义华.基于弱耦合的翼伞气动变形数值模拟[J].北京航空航天大学学报, 2013, 39(5):605-609. https://bhxb.buaa.edu.cn/CN/Y2013/V39/I5/605

    ZHANG C, CAO Y H.Numerical simulation of parafoil aerodynamics and structural deformation based on loose coupled method[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5):605-609(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2013/V39/I5/605
    [21] SEDERBERG T W, PARRY S R.Free-form deformation of solid geometric models[J].ACM SIGGRAPH Computer Graphics, 1986, 20(4):151-160. doi: 10.1145/15886.15903
    [22] LEE C K, BUCKLEY J E.New technique for parafoil inflation control[J].Journal of Aircraft, 2000, 37(3):479-483. doi: 10.2514/2.2622
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  651
  • HTML全文浏览量:  72
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-23
  • 录用日期:  2019-09-06
  • 网络出版日期:  2020-06-20

目录

    /

    返回文章
    返回
    常见问答