留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热环境对CCF800/环氧挖补板拉压性能的影响

张婕 程小全 程羽佳 冯振宇

张婕, 程小全, 程羽佳, 等 . 湿热环境对CCF800/环氧挖补板拉压性能的影响[J]. 北京航空航天大学学报, 2020, 46(6): 1116-1124. doi: 10.13700/j.bh.1001-5965.2019.0416
引用本文: 张婕, 程小全, 程羽佳, 等 . 湿热环境对CCF800/环氧挖补板拉压性能的影响[J]. 北京航空航天大学学报, 2020, 46(6): 1116-1124. doi: 10.13700/j.bh.1001-5965.2019.0416
ZHANG Jie, CHENG Xiaoquan, CHENG Yujia, et al. Effect of hygrothermal environment on tensile and compressive properties of CCF800/epoxy scarf-repaired laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1116-1124. doi: 10.13700/j.bh.1001-5965.2019.0416(in Chinese)
Citation: ZHANG Jie, CHENG Xiaoquan, CHENG Yujia, et al. Effect of hygrothermal environment on tensile and compressive properties of CCF800/epoxy scarf-repaired laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1116-1124. doi: 10.13700/j.bh.1001-5965.2019.0416(in Chinese)

湿热环境对CCF800/环氧挖补板拉压性能的影响

doi: 10.13700/j.bh.1001-5965.2019.0416
基金项目: 

国家自然科学基金 11472024

详细信息
    作者简介:

    张婕 女, 博士研究生。主要研究方向:复合材料结构设计

    程小全 男,博士,教授,博士生导师。主要研究方向:复合材料结构设计

    通讯作者:

    程小全.E-mail: xiaoquan_cheng@buaa.edu.cn

  • 中图分类号: V214.8;TB131

Effect of hygrothermal environment on tensile and compressive properties of CCF800/epoxy scarf-repaired laminates

Funds: 

National Natural Science Foundation of China 11472024

More Information
  • 摘要:

    针对挖补修理后飞行器在服役期间会经历高温高湿环境,进行了湿热环境对挖补修理层合板(以下简称挖补板)拉压性能影响的研究。首先,测试了4种湿热环境下CCF800/环氧挖补板的拉伸和压缩性能;然后,建立了相应的湿热应力有限元模型,探索了不同湿热环境下挖补板内的湿热应力分布;最后,在此基础上建立了湿热环境下挖补板的拉伸和压缩力学模型,研究了湿热环境对CCF800/环氧挖补板力学性能的影响。试验结果显示,湿热环境使挖补板的承压能力降低,承拉能力提高,这与常理不符。经试验观察和机理分析,发现CCF800/环氧铺层中纤维弯曲是导致湿热环境下挖补板拉伸性能不降反升的主要原因。在考虑湿热环境时,制备CCF800纤维复合材料过程中需要格外注意纤维弯曲问题。

     

  • 图 1  挖补板拉伸试验件构型

    Figure 1.  Configuration of scarf-repaired tensile specimens

    图 2  挖补板压缩试验件构型

    Figure 2.  Configuration of scarf-repaired compressive specimens

    图 3  带有环境箱的拉伸和压缩试验装置

    Figure 3.  Tensile and compressive experimental setup with conditioning chamber

    图 4  四种湿热环境下挖补板最大拉伸载荷

    Figure 4.  Maximum tensile loads of scarf-repaired laminates in four hygrothermal environments

    图 5  四种湿热环境下挖补板最大压缩载荷

    Figure 5.  Maximum compressive loads of scarf-repaired laminates in four hygrothermal environments

    图 6  湿热环境下挖补板力学有限元模型流程

    Figure 6.  Flowchart of mechanical finite element model of scarf-repaired laminates in hygrothermal environments

    图 7  挖补板拉伸和压缩有限元模型

    Figure 7.  Tensile and compressive finite element models of scarf-repaired laminates

    图 8  胶层、补片和母板内最大湿应力、热应力及湿热应力对比

    Figure 8.  Comparison of maximum moisture, thermal and hygrothermal stresses inside adhesives, patches and parent laminate

    图 9  挖补板拉伸模型内湿热应力

    Figure 9.  Hygrothermal stress inside tensile model of scarf-repaired laminates

    图 10  RD环境下挖补板试验和有限元拉伸破坏模式对比

    Figure 10.  Comparison of tensile failure profiles of scarf-repaired laminates in RD enviroment between experiment and finite element method

    图 11  RD环境下挖补板试验和有限元压缩破坏模式对比

    Figure 11.  Comparison of compressive failure profiles of scarf-repaired laminates in RD enviroment between experiment and finite element method

    图 12  四种湿热环境下挖补板试验和有限元最大拉伸与压缩载荷对比(湿热环境下复合材料强度不变)

    Figure 12.  Comparison of maximum tensile and compressive loads of scarf-repaired laminates in four bygrothermal environments between experiment and finite element method (when composite strengths do not change in hygrothermal environments)

    图 13  复合材料CCF800/环氧层合板内纤维弯曲

    Figure 13.  Fiber misalignment in composite CCF800/epoxy laminate

    表  1  四种湿热环境下挖补板平均表面刚度

    Table  1.   Average surface stiffness of scarf-repairedlaminates in four hygrothermal environments

    湿热环境 平均表面刚度/(N·(με) -1)
    RD 26.0
    RW 25.0
    ED 26.4
    EW 26.9
    下载: 导出CSV

    表  2  RD环境下复合材料CCF800/环氧力学性能参数

    Table  2.   Mechanical property parameters of composite CCF800/epoxy in RD enviroment

    参数 数值
    纵向弹性模量E11/GPa 165
    横向和厚度方向上弹性模量E22, E33/GPa 8.47
    剪切模量G12, G13/GPa 4.25
    剪切模量G23/GPa 3.6
    泊松比ν12, ν13, ν23 0.34
    纵向拉伸强度X T/MPa 2390
    横向和厚度方向上拉伸强度Y T, Z T/MPa 62.9
    纵向压缩强度X C/MPa 1342
    横向和厚度方向上压缩强度Y C, Z C/MPa 211
    剪切强度S12, S13/MPa 77
    剪切强度S23/MPa 101
    下载: 导出CSV

    表  3  胶黏剂SY14M和复合材料CCF800/环氧湿热材料参数[21]

    Table  3.   Hygrothermal material parameters of adhesive SY14M and composite CCF800/epoxy[21]

    参数 胶黏剂SY14M 复合材料CCF800/环氧
    湿扩散率
    D/(mm 2·h -1)
    0.0226 0.0197(纵向), 0.00667
    (横向)
    溶解度s 0.0635 0.012
    热膨胀系数
    α/K -1
    4×10 -5 1×10 -7/K (纵向), 2.6×10 -5/K(横向)
    湿膨胀系数
    β/(wt%) -1
    0.0022 2.5×10 -8 (纵向), 0.001
    (横向)
    下载: 导出CSV

    表  4  RD环境下挖补板试验和有限元的最大拉伸和压缩载荷对比

    Table  4.   Comparison of maximum tensile and compressive loads of scarf-repaired laminates in RD enviroment between experiment and finite element method

    性能 试验平均值/kN 有限元结果/kN 误差/%
    拉伸 104.7 106.0 +1.2
    压缩 79.0 80.3 +1.6
    下载: 导出CSV

    表  5  RW、ED和EW环境下复合材料CCF800/环氧修正参数

    Table  5.   Corrective parameters of composite CCF800/epoxy in RW, ED and EW enviroments

    湿热环境 f1 f2 f3
    RW 1.5 1.5 0.7
    ED 1.5 2 0.7
    EW 2 2.2 0.5
    下载: 导出CSV
  • [1] CHENG X Q, ZHANG J, BAO J W, et al.Low-velocity impact performance and effect factor analysis of scarf-repaired composite laminates[J].International Journal of Impact Engineering, 2018, 111:85-93. doi: 10.1016/j.ijimpeng.2017.09.004
    [2] DEMS K, RADASZEWSKA E, TURANT J.Modeling of fiber-reinforced composite material subjected to thermal load[J].Thermal Stresses, 2012, 35(7):579-595. doi: 10.1080/01495739.2012.674786
    [3] 韩坤华, 余音, 汪海.瞬态湿浓度分布对复合材料胶接修理强度的影响[C]//第17届全国复合材料学术会议, 2012: 95-100.

    HAN K H, YU Y, WANG H.Effect of transient moisture distribution on composite bonded repair strength[C]//17th National Conference on Composite Materials, 2012: 95-100(in Chinese).
    [4] 赵晨, 陈跃良, 刘旭.湿热条件下飞机聚合物基复合材料界面问题研究进展[J].环境装备工程, 2012, 9(5):62-66. http://d.old.wanfangdata.com.cn/Periodical/jscxgy201205015

    ZHAO C, CHEN Y L, LIU X.Research progress of interface of polymer matrix composites for aircraft in hot and humid environment[J].Equipment Environmental Engineering, 2012, 9(5):62-66(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jscxgy201205015
    [5] 展全伟, 范学领, 孙秦.复合材料孔板在湿热环境下的力学性能研究[J].固体火箭技术, 2011, 34(6):764-767. doi: 10.3969/j.issn.1006-2793.2011.06.019

    ZHAN Q W, FAN X L, SUN Q.Effects of hygrothermal environment on static properties of laminated composites with a circular open hole[J].Journal of Solid Rocket Technology, 2011, 34(6):764-767(in Chinese). doi: 10.3969/j.issn.1006-2793.2011.06.019
    [6] XU J, KOLSTEIN H, BIJLAARD F S.Moisture diffusion in glass-fiber-reinforced polymer composite bridge under hot/wet environment[J].Composites Part B:Engineering, 2013, 45(1):407-416. doi: 10.1016/j.compositesb.2012.04.067
    [7] 闫伟, 燕瑛, 苏玲.湿-热-力耦合环境下复合材料结构损伤分析与性能研究[J].复合材料学报, 2010, 27(2):113-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201002019

    YAN W, YA Y, SU L.Damage analysis and strength prediction of composites structures in hygrothermal environment[J].Acta Materiae Compositae Sinica, 2010, 27(2):113-116(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb201002019
    [8] LA SAPONARA V.Environmental and chemical degradation of carbon/epoxy and structural adhesive for aerospace applications:Fickian and anomalous diffusion, Arrhenius kinetics[J].Composite Structures, 2011, 93(9):2180-2195. doi: 10.1016/j.compstruct.2011.03.005
    [9] AOKI Y, YAMADA K, ISHIKAWA T.Effect of hygrothermal condition on compression after impact strength of CFRP laminates[J].Composites Science and Technology, 2008, 68(6):1376-1383. doi: 10.1016/j.compscitech.2007.11.015
    [10] LAL A, SINGH B N, ANAND S.Nonlinear bending response of laminated composite spherical shell panel with system randomness subjected to hygro-thermo-mechanical loading[J].International Journal of Mechanical Sciences, 2011, 53(10):855-866. doi: 10.1016/j.ijmecsci.2011.07.008
    [11] 封彤波, 肇研, 罗云烽, 等.循环湿热环境下碳纤维复合材料的界面性能[J].北京航空航天大学学报, 2010, 36(12):1427-1431. https://bhxb.buaa.edu.cn/CN/Y2010/V36/I12/1427

    FENG T B, ZHAO Y, LUO Y F, et al.Effect of cyclic hygrothermal environment on interfacial property of CCF300/BMI composites[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(12):1427-1431(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2010/V36/I12/1427
    [12] ZAFAR A, BERTOCCO F, SCHJODT-THOMSEN J, et al.Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites[J].Composites Science and Technology, 2012, 72(6):656-666. doi: 10.1016/j.compscitech.2012.01.010
    [13] CHENG X Q, LIU S F, ZHANG J K, et al.Hygrothermal effects on mechanical behavior of scarf repaired carbon-epoxy laminates subject to axial compression loads:Experiment and numerical simulation[J].Polymer Composites, 2018, 39(3):904-914. doi: 10.1002/pc.24017
    [14] CHARALAMBIDES M N, HARDOUIN R, KINLOCH A J, et al.Adhesively-bonded repairs to fiber-composite materials:Experimental[J].Composite Part A:Applied Science and Manufacturing, 1998, 29(11):1371-1381. doi: 10.1016/S1359-835X(98)00060-8
    [15] ELALDI F, ELALDI P.Processing and environmental effects on composite repairs[J].Materials and Manufacturing Processes, 2012, 27(3):255-259. doi: 10.1080/10426914.2011.577873
    [16] 刘淑峰.湿热环境下挖补修理复合材料层合结构力学性能研究[D].北京: 北京航空航天大学, 2016.

    LIU S F.Study on the mechanical properties of scarf repaired CFRP laminates subject to hygrothermal environment[D].Beijing: Beihang University, 2016(in Chinese).
    [17] ASTM.Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M[S].West Conshohocken: ASTM International, 2014.
    [18] ASTM.Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137M[S].West Conshohocken: ASTM International, 2017.
    [19] ASTM.Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM D5229/D5229M[S].West Conshohocken: ASTM International, 2014.
    [20] LIU S F, CHENG X Q, ZHANG Q, et al.An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates[J].Composite Part B:Engineering, 2016, 91:431-440. doi: 10.1016/j.compositesb.2016.01.051
    [21] 张骞.预埋金属复合材料结构湿热性能研究[D].合肥: 合肥工业大学, 2018.

    ZHANG Q.Study on the hygrothermal properties of composite structure with bonded embedded metal plate[D].Heifei: Heifei University of Technology, 2018(in Chinese).
    [22] HASHIN Z.Failure criteria for unidirectional fiber composites[J].Journal of Applied Mechanics, 1980, 47(2):329-334. doi: 10.1115/1.3153664
    [23] LESSARD L B.Comparison failure in laminated containing an open hole[D].Palo Alto: Stanford University, 1989.
    [24] YE L.Role of matrix resin in delamination onset and growth in composite lamiantes[J].Composites Science and Technology, 1988, 33(4):257-277. doi: 10.1016/0266-3538(88)90043-7
    [25] CHANG F K, CHANG K Y.A progressive damage model for laminated composites containing stress concentration[J].Journal of Composite Materials, 1987, 21:834-855. doi: 10.1177/002199838702100904
    [26] TSERPES K I, LABEAS G, PAPANIKOS P, et al.Strength prediction of bolted joints in graphite/epoxy composite laminates[J].Composites Part B:Engineering, 2002, 33(7):521-529. doi: 10.1016/S1359-8368(02)00033-1
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  90
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-27
  • 录用日期:  2019-10-25
  • 网络出版日期:  2020-06-20

目录

    /

    返回文章
    返回
    常见问答