留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于受限参变率的飞翼无人机舵面阵风减缓控制

孙逸轩 白俊强 刘金龙 孙智伟

孙逸轩, 白俊强, 刘金龙, 等 . 基于受限参变率的飞翼无人机舵面阵风减缓控制[J]. 北京航空航天大学学报, 2020, 46(7): 1387-1397. doi: 10.13700/j.bh.1001-5965.2019.0435
引用本文: 孙逸轩, 白俊强, 刘金龙, 等 . 基于受限参变率的飞翼无人机舵面阵风减缓控制[J]. 北京航空航天大学学报, 2020, 46(7): 1387-1397. doi: 10.13700/j.bh.1001-5965.2019.0435
SUN Yixuan, BAI Junqiang, LIU Jinlong, et al. Gust alleviation control for flying-wing UAV by control surface based on limited parameter variation rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1387-1397. doi: 10.13700/j.bh.1001-5965.2019.0435(in Chinese)
Citation: SUN Yixuan, BAI Junqiang, LIU Jinlong, et al. Gust alleviation control for flying-wing UAV by control surface based on limited parameter variation rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1387-1397. doi: 10.13700/j.bh.1001-5965.2019.0435(in Chinese)

基于受限参变率的飞翼无人机舵面阵风减缓控制

doi: 10.13700/j.bh.1001-5965.2019.0435
详细信息
    作者简介:

    孙逸轩  男, 硕士研究生。主要研究方向:飞行器设计

    白俊强  男, 博士, 教授, 博士生导师。主要研究方向:飞行器气动优化设计、飞行器综合应用、计算流体力学

    刘金龙  男, 硕士研究生。主要研究方向:飞行器设计

    孙智伟  男, 博士研究生。主要研究方向:飞行器设计

    通讯作者:

    白俊强, E-mail: junqiang@nwpu.edu.cn

  • 中图分类号: V221

Gust alleviation control for flying-wing UAV by control surface based on limited parameter variation rate

More Information
  • 摘要:

    飞翼无人机具有俯仰惯量低、纵向稳定性弱等问题,使其阵风响应对飞行参数的变化较为敏感,并且飞翼无人机的舵面较多,不同的控制策略下阵风减缓的效果不同。因此,对这类飞行器进行考虑参数变化率阵风减缓线性变参数(LPV)控制律设计,并对不同舵面组合方式的控制性能展开对比研究。结合参数依赖的Lyapunov函数方法和变参斜投影降阶算法,构建了同时考虑参数变化率限制和模型降阶条件的LPV阵风减缓控制器。基于该方法对Mini-MUTT飞翼无人机模型设计LPV阵风减缓控制器;探究了不同舵面控制策略对减缓效果的影响。结果表明:采用变参斜投影降阶算法得到的降阶模型可有效表征全阶模型的动力学特性;设计的LPV阵风减缓控制器能够保证阵风在较宽速度范围内有效减缓;在单一舵面阵风减缓中,置于外侧的舵面控制效果优于内侧舵面;而在双舵面阵风减缓中,双舵面的控制效果优于单一舵面,但控制所需输入能量也会增加。在工程应用中需要针对具体问题,综合考虑控制效果和能量消耗以确定合适的控制策略。

     

  • 图 1  Mini-MUTT飞翼无人机传感器及舵面配置

    Figure 1.  Sensors and control surface placement of Mini-MUTT flying-wing UAV

    图 2  LPV阵风减缓控制器建模与计算流程

    Figure 2.  LPV gust alleviation controller modelling andcalculation process

    图 3  定义在矩形网格的LPV模型

    Figure 3.  LPV model defined in rectangular grid

    图 4  Hankel奇异值柱状图

    Figure 4.  Histogram of Hankel singular value

    图 5  全阶模型和降阶模型的幅频特性对比

    Figure 5.  Comparison of amplitude-frequency characteristics between full-order and reduced-order model

    图 6  参数轨迹

    Figure 6.  Parameter trajectory

    图 7  全阶模型和降阶模型的阶跃响应对比

    Figure 7.  Comparison of step response between full-order and reduced-order model

    图 8  LPV颤振抑制控制框图

    Figure 8.  LPV control program chart of flutter suppression

    图 9  Dryden阵风模型

    Figure 9.  Dryden gust model

    图 10  调度参数轨迹

    Figure 10.  Trajectory of scheduling parameter

    图 11  开环系统与闭环系统2种舵面输出响应对比

    Figure 11.  Comparison of output response for two kinds of control surface between open-loop and closed-loop system

    图 12  单舵面与双舵面控制输出响应对比

    Figure 12.  Comparison of output responses between single control surface and double control surfaces control

    图 13  单舵面与双舵面控制输出响应功率谱对比

    Figure 13.  Comparison of power spertrum of output responses between single control surface and double control surfaces control

    图 14  单舵面与双舵面控制输入对比

    Figure 14.  Comparison of input between single control surface and double control surfaces control

    表  1  Mini-MUTT飞翼无人机动力学参数[14]

    Table  1.   Dynamic parameters of Mini-MUTT flying-wing UAV[14]

    动力学参数 数值
    刚体机身质量/kg 2.9877
    刚体机身静矩Sx/(kg·m) 0.4270
    刚体机身静矩Sz/(kg·m) 0
    刚体机身惯量Iy/(kg·m2) 0.1994
    机翼总质量/kg 2.397 2
    机翼弯曲刚度EIz/(N·m2) 97.66
    机翼扭转刚度GJx/(N·m2) 56.49
    机翼单位长度质量μ/(kg·m-1) 0.60
    机翼单位长度转动惯量Iwing/(kg·m) 0.0031
    机翼半弦长b/m 0.14
    机翼刚心无量纲距离a -0.0922
    注:EG分别为刚度系数和扭转系数;IzJx分别为机翼截面绕z轴惯性矩和机翼截面绕x轴极惯性矩。
    下载: 导出CSV

    表  2  2种控制方式的幅值减缓率对比

    Table  2.   Comparison of amplitude reduction rate between two control strategies

    控制方式 幅值减缓率/%
    全机俯仰角速度 全机刚体浮沉加速度 翼尖加速度
    外副翼 40.12 35.73 10.56
    襟翼+外副翼 44.86 38.93 11.73
    下载: 导出CSV

    表  3  2种控制形式的能量减缓率对比

    Table  3.   Comparison of energy reduction rate between two control strategies

    能量减缓率 能量减缓率/%
    全机俯仰角速度 全机刚体浮沉加速度 翼尖加速度
    外副翼 58.39 56.92 8.78
    襟翼+外副翼 64.36 61.08 10.56
    下载: 导出CSV
  • [1] SOHRAB H.Multidisciplinary design optimization of a highly flexible aeroservoelastic wing[D].Toronto: University of Toronto, 2012.
    [2] OLDS S D.Modeling and LQR control of two-dimensional airfoil[D].Blacksbur: Virginia Polytechnic Institute and State University, 1997.
    [3] BAIL T R.A disturbance-rejection problem for a 2-d airfoil[D].Blacksbur: Virginia Polytechnic Institute and State University, 1997.
    [4] BARKER J M, BALAS G J.Comparing linear parameter-varying gain-scheduled control techniques for active flutter suppression[J].Journal of Guidance, Control, and Dynamics, 2000, 23(5):948-955. doi: 10.2514/2.4637
    [5] BALAS G J, CLAUDIA M, PETER J S.Robust aeroservoelastic control utilizing physics-based aerodynamic sensing[C]//AIAA Guidance, Navigation and Control Conference.Reston: AIAA, 2012: 4897-4907.
    [6] MCKENZIE J R.B-52 control configured vehicles ride control analysis and flight test: AIAA-1973-782[R].Reston: AIAA, 1973.
    [7] DISNEY T E.C-5A active load alleviation system[J].Journal of Spacecraft and Rockets, 1977, 14(2):81-86. doi: 10.2514/3.57164
    [8] WINTHER B A, SHIRLEY W A, HEIMBAUGH R M.Windtunnel investigation of active control technology applied to a DC-10 deribative: AIAA-1980-0771[R].Reston: AIAA, 1980.
    [9] KARPEL M, MOULIN B, FELDGUN V.Active alleviation of gust loads using special control surfaces: AIAA-2006-1833[R].Reston: AIAA, 2006.
    [10] 许晓平, 周洲, 王军利.基于直接力控制的阵风响应及阵风减缓研究[J].空气动力学学报, 2012, 30(1):101-107. doi: 10.3969/j.issn.0258-1825.2012.01.018

    XU X P, ZHOU Z, WANG J L.Research on gust response and gust mitigation based on direct force control[J].Acta Aerodynamica Sinina, 2012, 30(1):101-107(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.01.018
    [11] 杨俊斌, 吴志刚, 戴玉婷, 等.飞翼布局飞机阵风减缓主动控制风洞试验[J].北京航空航天大学学报, 2017, 43(1):184-192. doi: 10.13700/j.bh.1001-5965.2016.0079

    YANG J B, WU Z G, DAI Y T, et al.Flying wing layout aircraft gust mitigation active control wind tunnel test[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):184-192(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0079
    [12] 陈磊, 吴志刚, 杨超, 等.多控制面机翼阵风减缓主动控制与风洞试验验证[J].航空学报, 2009, 30(12):2250-2256. doi: 10.3321/j.issn:1000-6893.2009.12.002

    CHEN L, WU Z G, YANG C, et al.Active control and wind tunnel test verif ication of multi-control surfaces wing for gust alleviation[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(12):2250-2256(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.12.002
    [13] EDWARD B, CHRIS A, JEFF B, et al.NDOF simulation model for flight control development with flight test correlation[C]//AIAA Modeling and Simulation Technologies Conference.Reston: AIAA, 2010: 7780-7794.
    [14] ABHINEET G, CLAUDIA P M, HARALD P, et al.Updating a finite element based structural model of a small flexible aircraft[C]//AIAA Modeling and Simulation Technologies Conference.Reston: AIAA, 2015: 1-14.
    [15] 孙智伟.高空长航时无人机多学科设计若干问题研究[D].西安: 西北工业大学, 2016.

    SUN Z W.Investigation of the problems in multidisciplinary design of high altitude long endurance unmanned aerial vehicle[D].Xi'an: Northwestern Polytechnical University, 2016(in Chinese).
    [16] ANDY P.Gain scheduling via linear fractional transformations[J].Systems and Control Letters, 1994, 22(2):79-92. doi: 10.1016/0167-6911(94)90102-3
    [17] WU F.Control of linear parameter varying systems[D].Berkeley: University of California, 1995.
    [18] SUN X, POSTLETHWAITE I.Affine LPV modeling and its use in gain-scheduled helicopter control[C]//UKACC International Conference on Control.[S.l.]: Institution of Engineering and Technology, 1998: 1504-1509.
    [19] THEIS J, SEILER P, WERNER H.Model order reduction by parameter-varying oclique projection[C]//American Control Conference.Piscataway: IEEE Press, 2016: 4586-4591.
    [20] WU F, YANG X H, ANDY P, et al.Induced L2-norm control for LPV systems with bounded parameter variation rates[C]//American Control Conference.Piscataway: IEEE Press, 2002: 983-998.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  792
  • HTML全文浏览量:  165
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-12
  • 录用日期:  2019-11-11
  • 网络出版日期:  2020-07-20

目录

    /

    返回文章
    返回
    常见问答