留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂管网系统未知信息调节阀的一种瞬变建模方法

王烨君 陈阳 蔡国飙 黄玉龙 王仙勇

王烨君, 陈阳, 蔡国飙, 等 . 复杂管网系统未知信息调节阀的一种瞬变建模方法[J]. 北京航空航天大学学报, 2020, 46(8): 1535-1544. doi: 10.13700/j.bh.1001-5965.2019.0486
引用本文: 王烨君, 陈阳, 蔡国飙, 等 . 复杂管网系统未知信息调节阀的一种瞬变建模方法[J]. 北京航空航天大学学报, 2020, 46(8): 1535-1544. doi: 10.13700/j.bh.1001-5965.2019.0486
WANG Yejun, CHEN Yang, CAI Guobiao, et al. A transient modeling method for unknown information regulating valves in complex pipeline network system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1535-1544. doi: 10.13700/j.bh.1001-5965.2019.0486(in Chinese)
Citation: WANG Yejun, CHEN Yang, CAI Guobiao, et al. A transient modeling method for unknown information regulating valves in complex pipeline network system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1535-1544. doi: 10.13700/j.bh.1001-5965.2019.0486(in Chinese)

复杂管网系统未知信息调节阀的一种瞬变建模方法

doi: 10.13700/j.bh.1001-5965.2019.0486
基金项目: 

国家自然科学基金 11101023

详细信息
    作者简介:

    王烨君  男,硕士研究生。主要研究方向:液体推进系统动力学与仿真

    陈阳  男,博士,讲师,硕士生导师。主要研究方向:液体推进系统动力学与仿真

    通讯作者:

    陈阳, E-mail:yangchen@buaa.edu.cn

  • 中图分类号: V434

A transient modeling method for unknown information regulating valves in complex pipeline network system

Funds: 

National Natural Science Foundation of China 11101023

More Information
  • 摘要:

    关键调节阀信息缺失是制约复杂管网系统可建模的重要因素。通过对调节阀建模研究的分类和总结,得出了多数调节阀的流量特性曲线均处于等百分比与线性之间的结论;进而针对结构和节流特性均未知的调节阀,提出了一种利用信息已知的基准阀门模型和有限的系统试验数据进行建模的方法。对核心机试验台气路系统中2个未知信息调节阀的建模与仿真表明:在常温0~1 400 s、低温0~1 240 s两种工况下,选用3种不同基准阀门模型仿真结果的差别低于10%,2个调节阀在47组件气路全系统仿真中的流量曲线与试验曲线之间的平均误差在15%以内,系统下游两支路的压强仿真曲线与试验曲线之间的最大误差低于15%,为解决此类问题提供了一种有效的建模方案。

     

  • 图 1  核心机试验台气路系统的数值仿真模型

    Figure 1.  Numerical simulation model of core engine test rig gas circuit system

    图 2  气体阀门的有限体积模型

    Figure 2.  Finite volume model of gas valve

    图 3  Vanessa阀、HCB阀、YYL阀和线性阀门的流量特性曲线

    Figure 3.  Flow characteristic curves of Vanessa valve, HCB valve, YYL valve and linear valve

    图 4  F3调节阀简化系统的数值仿真模型

    Figure 4.  Numerical simulation model of F3 valve simple system

    图 5  简化系统中F3调节阀采用3种基准阀门模型建模的仿真结果对比

    Figure 5.  Comparison of simulation results of F3 valve modeling by three reference-valve models in simple system

    图 6  F4调节阀简化系统的数值仿真模型

    Figure 6.  Numerical simulation model of F4 valve simple system

    图 7  简化系统中F4调节阀采用3种基准阀门模型建模的仿真结果对比

    Figure 7.  Comparison of simulation results of F4 valve modeling by three reference-valve models in simple system

    图 8  常温工况下F3调节阀采用3种基准阀门模型建模的仿真结果与试验测量结果对比

    Figure 8.  Comparison of simulation results of F3 valve modeling by three reference-valve models with experimental measurements under normal-temperature condition

    图 9  低温工况下F4调节阀采用3种基准阀门模型建模的仿真结果与试验测量结果对比

    Figure 9.  Comparison of simulation results of F4 valve modeling by three reference-valve models with experimental measurements under low-temperature condition

    表  1  使用标定-校准方法计算的F3调节阀额定流量系数

    Table  1.   Calculation process of F3 valve rated flow coefficient by calibration-adjusting method

    基准阀门模型 系统试验数据 额定流量系数标定结果 额定流量系数校准结果
    p1/MPa p2/MPa T1/K T2/K τ Qm/(kg·s-1)
    Vanessa阀
    HCB阀
    YYL阀
    1.37 超临界情况下不需要 289.86 超临界情况下不需要 0.44 14.67 60.24(KvRating)
    351.4 (CdRating)
    741.6(CdRating)
    81.64(KvRating)
    410(CdRating)
    960(CdRating)
    下载: 导出CSV

    表  2  使用试算-标定方法计算的F4调节阀额定流量系数

    Table  2.   Calculation process of F4 valve rated flow coefficient by trial-calibration method

    基准阀门模型 二分法 试算次数 额定流量系数标定结果 额定流量系数最终收敛区间
    最小初值 最大初值
    Vanessa阀 1.0 81.64 10 4.5(KvRating) (4.78, 5.10)
    HCB阀 1.0 81.64 7 39(CdRating) (38.8, 41.32)
    YYL阀 1.0 200 7 63(CdRating) (61.63, 63.19)
    下载: 导出CSV
  • [1] 张宏伟, 王晨婉, 牛志广, 等.城市供水管网物理模型构建方法[J].天津大学学报, 2008, 41(7):859-863. doi: 10.3969/j.issn.0493-2137.2008.07.018

    ZHANG H W, WANG C W, NIU Z G, et al.Constructing method for the physical model of municipal water distribution system[J].Journal of Tianjin University, 2008, 41(7):859-863(in Chinese). doi: 10.3969/j.issn.0493-2137.2008.07.018
    [2] GEORGESCU S C, GEORGESCU A M, JUMARA A, et al.Numerical simulation of the cooling water system of a 115 MW hydro-power plant[J].Energy Procedia, 2016, 85:228-234. doi: 10.1016/j.egypro.2015.12.230
    [3] GOREV N B, KODZHESPIROVA I F, SIVAKUMAR P.Modeling of flow control valves with a nonzero loss coefficient[J].Journal of Hydraulic Engineering, 2016, 142(11):1-3.
    [4] 杨毅, 周志斌, 李长俊, 等.天然气管输调节控制仿真模型[J].天然气工业, 2008, 28(10):98-100. doi: 10.3787/j.issn.1000-0976.2008.10.031

    YANG Y, ZHOU Z B, LI C J, et al.Research on natural gas pipeline regulation control simulation model[J].Natural Gas Industry, 2008, 28(10):98-100(in Chinese). doi: 10.3787/j.issn.1000-0976.2008.10.031
    [5] ZHANG L.Simulation of the transient flow in a natural gas compression system using a high-order upwind scheme considering the real-gas behaviors[J].Journal of Natural Gas Science and Engineering, 2016, 28:479-490. doi: 10.1016/j.jngse.2015.12.012
    [6] LI C J, JIA W L, WU X.A steady state simulation method for natural gas pressure-relieving systems[J].Journal of Natural Gas Science and Engineering, 2014, 19:1-12. doi: 10.1016/j.jngse.2014.04.012
    [7] MAHGEREFTEH H, SUNDARA V, BROWN S, et al.Modelling emergency isolation of carbon dioxide pipelines[J].International Journal of Greenhouse Gas Control, 2016, 44:88-93. doi: 10.1016/j.ijggc.2015.11.001
    [8] 陈勇, 李隆键, 程静.液氧输送管路中阀控瞬变的数值计算[J].哈尔滨工业大学学报, 2013, 45(9):75-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201309014

    CHEN Y, LI L J, CHENG J.Numerical computation of hydraulic transients in valve operating processes of LO2 delivery pipes[J].Journal of Harbin Institute of Technology, 2013, 45(9):75-81(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb201309014
    [9] CHEN Y, CAI G B, WU Z.Modularization modeling and simulation of turbine test rig main test system[J].Applied Mathematical Modelling, 2011, 35(11):5382-5399. doi: 10.1016/j.apm.2011.04.041
    [10] CHEN Y, CAI G B, ZHANG Z P, et al.Multi-field coupling dynamic modeling and simulation of turbine test rig gas system[J].Simulation Modelling Practice and Theory, 2014, 44:95-118. doi: 10.1016/j.simpat.2014.03.004
    [11] 史智俊, 张国磊, 李彦军, 等.回汽保护控制下舰用蒸汽动力系统响应规律[J].化工学报, 2015, 66(S2):287-293. doi: 10.11949/j.issn.0438-1157.20150649

    SHI Z J, ZHANG G L, LI Y J, et al.Response pattern of marine steam power system under back-steam protection[J].CIESC Journal, 2015, 66(S2):287-293(in Chinese). doi: 10.11949/j.issn.0438-1157.20150649
    [12] 裴希同, 张松, 但志宏, 等.高空台飞行环境模拟系统数字建模与仿真研究[J].推进技术, 2019, 40(1):332-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201905022

    PEI X T, ZHANG S, DAN Z H, et al.Study on digital modeling and simulation of altitude test facility flight environment simulation system[J].Journal of Propulsion Technology, 2019, 40(1):332-340(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201905022
    [13] 孟成, 苏明.重型燃气轮机天然气供应系统整体性能仿真[J].上海交通大学学报, 2016, 50(4):483-489. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shjtdxxb201604001

    MENG C, SU M.Performance simulation of natural gas supply system of a heavy duty gas turbine[J].Journal of Shanghai Jiaotong University, 2016, 50(4):483-489(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shjtdxxb201604001
    [14] PILLER O, VANZYL J E.Modeling control valves in water distribution systems using a continuous state formulation[J]. Journal of Hydraulic Engineering, 2014, 140(11):1-9.
    [15] CHEN Y, WANG H S, XIA J X, et al.Dynamic modeling and simulation of an integral bipropellant propulsion double-valve combined test system[J].Acta Astronautica, 2017, 133:346-374. doi: 10.1016/j.actaastro.2016.10.010
    [16] 何衍庆, 邱宣振, 杨洁, 等.控制阀工程设计与应用[M].北京:化学工业出版社, 2005:46-49.

    HE Y Q, QIU X Z, YANG J, et al.Control valves engineering design and application[M].Beijing:Chemical Industry Press, 2005:46-49(in Chinese).
    [17] 胡继敏, 金家善, 严志腾.储汽筒充汽系统的热力过程建模与仿真[J].上海交通大学学报, 2012, 46(4):545-549. http://www.cnki.com.cn/Article/CJFDTotal-SHJT201204008.htm

    HU J M, JIN J S, YAN Z T.Modeling and simulation for thermodynamic process of steam accumulato system[J].Journal of Shanghai Jiaotong University, 2012, 46(4):545-549(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-SHJT201204008.htm
    [18] 李亦健, 高旭, 陈虹, 等.低温推进剂加注系统置换介质的相似性分析[J].推进技术, 2018, 39(3):703-708. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201803026

    LI Y J, GAO X, CHEN H, et al.Similarity analysis of different replacement gases for cryogenic propellant loading system[J].Journal of Propulsion Technology, 2018, 39(3):703-708(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201803026
    [19] 李树勋, 李忠, 周爱民, 等.三通调节球阀节流盘开口型线优化及试验研究[J].华中科技大学学报(自然科学版), 2017, 45(2):61-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzlgdxxb201702012

    LI S X, LI Z, ZHOU A M, et al.Optimization and test on throttle plate opening profile line of 3-way control ball valve[J].Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(2):61-66(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzlgdxxb201702012
    [20] 白雪莲, 吴静怡.管网系统中平衡阀对调节阀调节作用的影响[J].上海交通大学学报, 2006, 40(2):364-368. doi: 10.3321/j.issn:1006-2467.2006.02.041

    BAI X L, WU J Y.The influence of balance valve on action of regulating valve in pipe network[J].Journal of Shanghai Jiaotong University, 2006, 40(2):364-368(in Chinese). doi: 10.3321/j.issn:1006-2467.2006.02.041
    [21] 陈阳, 高芳, 张振鹏, 等.准一维可压缩瞬变管流的有限体积模型(Ⅱ)管壁温度场的有限体积模型[J].航空动力学报, 2008, 23(2):317-322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200802020

    CHEN Y, GAO F, ZHANG Z P, et al.Finite volume model for quasi one-dimensional compressible transient pipe flow(Ⅱ)Finite volume model of temperature field[J].Journal of Aerospace Power, 2008, 23(2):317-322(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200802020
    [22] LIANG Y Y, WANG D D, CHEN J P, et al.Temperature control for a vehicle climate chamber using chilled water system[J].Applied Thermal Engineering, 2016, 106:117-124. doi: 10.1016/j.applthermaleng.2016.05.168
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  129
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 录用日期:  2020-01-17
  • 网络出版日期:  2020-08-20

目录

    /

    返回文章
    返回
    常见问答