[1] 李龙,支庭荣."算法反恐":恐怖主义媒介化与人工智能应对[J].现代传播(中国传媒大学学报),2018(9):13-18.LI L,ZHI T R."Algorithmic anti-terrorism":Terrorism media and the response based on artificial intelligence[J].Modern Communication(Journal of Communication University of China),2018(9):13-18(in Chinese). [2] 倪叶舟,张鹏,扈翔, 等.大数据背景下暴恐信息挖掘方法综述[J].中国公共安全(学术版),2018(4):91-95.NI Y Z,ZHANG P,HU X,et al.Summarization of the methods of information mining in the background of big data[J].China Public Security(Academy Edition),2018(4):91-95(in Chinese). [3] 符亚彬.基于Logo标志检测的暴恐视频识别系统的设计与实现[D].北京:北京交通大学,2016:15-30.FU Y B.Design and implementation of the violent-terrorist video recognition system based on Logo markers detection[D].Beijing:Beijing Jiaotong University,2016:15-30(in Chinese). [4] 张宁,朱金福.机场区域中人群涉暴恐动作智能识别方法仿真[J].计算机仿真,2015,32(6):67-70.ZHANG N,ZHU J F.Intelligent recognition method simulation of ccritical action of people involved in airport areas[J].Computer Simulation,2015,32(6):67-70(in Chinese). [5] 王胜华.涉暴恐音视频犯罪实证研究——以中国裁判文书网公开的48个判例为分析样本[J].江西警察学院学报,2019(6):89-96.WANG S H.An empirical study on audio and video of violent terrorist crimes-Take 48 cases published by China judicial document network as the analysis sample[J].Journal of Jiangxi Police College,2019(6):89-96(in Chinese). [6] 黄炜,黄建桥,李岳峰.基于BiLSTM-CRF的暴恐信息实体识别模型研究[J].情报杂志,2019,38(12):149-156.HUANG W,HUANG J Q,LI Y F.Research on entity identification model of terrorism-related information based on BiLSTM-CRF[J].Journal of Intelligence,2019,38(12):149-156(in Chinese). [7] 廖浚斌,周欣,何小海,等.面向暴恐领域的知识图谱构建方法[J].信息技术与网络安全,2019,38(9):34-38.LIAO J B,ZHOU X,HE X H,et al.Construction method of knowledge graph for terrorism domain[J].Information Technology and Network Security,2019,38(9):34-38(in Chinese). [8] YAN L C,BERNHARD E B,JOHN S D,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551. [9] BENGIO Y, COURVILLE A,VINCENT P.Representation learning:A review and new perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1798-1828. [10] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. [11] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2012:1097-1105. [12] HUANG G,LIU Z,WEINBERGER K Q,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2017:2261-2269. [13] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2018:7132-7141. [14] TAN M,LE Q.EfficientNet:Rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning.Long Beach:PMLR,2019:6105-6114. [15] KINGMA D,BA J.Adam:A method for stochastic optimization[C]//International Conference on Learning Representations,2014. |