留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尺度自适应模拟的网格尺度关联分析

郑玮琳 庞历瑶 谢凡 阎超 曾文

郑玮琳, 庞历瑶, 谢凡, 等 . 尺度自适应模拟的网格尺度关联分析[J]. 北京航空航天大学学报, 2021, 47(1): 65-71. doi: 10.13700/j.bh.1001-5965.2019.0659
引用本文: 郑玮琳, 庞历瑶, 谢凡, 等 . 尺度自适应模拟的网格尺度关联分析[J]. 北京航空航天大学学报, 2021, 47(1): 65-71. doi: 10.13700/j.bh.1001-5965.2019.0659
ZHENG Weilin, PANG Liyao, XIE Fan, et al. Grid scale dependence analysis of scale adaptive simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 65-71. doi: 10.13700/j.bh.1001-5965.2019.0659(in Chinese)
Citation: ZHENG Weilin, PANG Liyao, XIE Fan, et al. Grid scale dependence analysis of scale adaptive simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 65-71. doi: 10.13700/j.bh.1001-5965.2019.0659(in Chinese)

尺度自适应模拟的网格尺度关联分析

doi: 10.13700/j.bh.1001-5965.2019.0659
基金项目: 

辽宁省博士科研启动基金 2019-BS-185

详细信息
    作者简介:

    郑玮琳  女, 博士, 副教授, 硕士生导师。主要研究方向:湍流模型、计算流体力学

    曾文  男, 博士, 教授, 硕士生导师。主要研究方向:化学反应流动、计算流体力学

    通讯作者:

    曾文, E-mail: zengwennew@126.com

  • 中图分类号: V211.3;TB126

Grid scale dependence analysis of scale adaptive simulation

Funds: 

Doctoral Start-up Foundation of Liaoning Province 2019-BS-185

More Information
  • 摘要:

    采用尺度自适应模拟(SAS)对雷诺数3 900的圆柱绕流展开数值模拟,对比分离涡模拟(DES)的计算结果和已有文献中的实验数据,系统研究了SAS和网格尺度的关联性问题。详细研究了不同网格分辨率和展向计算域的影响,分析了冯卡门尺度在尾迹区的时均湍流统计特性和瞬时分布规律。结果表明:在相同的网格分辨率下,SAS预测的回流区长度小于大涡模拟(LES),表现出较早的剪切层失稳;网格加密后,SAS预测的回流速度增大、雷诺应力峰值降低,计算结果与Lourenco & Shih的实验结果相接近。此外,在相同网格分辨率下改变展向计算域大小对SAS结果的影响很小。对SAS的网格尺度关联分析可以为该方法的工业应用提供指导。

     

  • 图 1  XY平面的中等网格

    Figure 1.  Medium grid in XY-plane

    图 2  时均流向速度沿尾迹区中心线的分布规律

    Figure 2.  Distribution law of streamwise mean velocity along centerline of wake region

    图 3  近壁面回流区内沿轴线不同站位的时均速度分布

    Figure 3.  Mean velocity profiles at different locations along axis in near wake region

    图 4  近壁面回流区内沿轴线不同站位的时均雷诺应力分布

    Figure 4.  Mean Reynolds stress profiles at different locations in near wake region

    图 5  Q准则显示的瞬态涡结构

    Figure 5.  Instantaneous vortex structure plotted by iso-surface of Q-criterion

    图 6  XY平面的QSASLvK的瞬态分布

    Figure 6.  Instantaneous distributions of QSAS and LvK in XY-plane

    表  1  计算状态

    Table  1.   Computational setup

    编号 湍流模型 网格数量 Lz/D Δz/D Δt×U/D
    A1 DES 137 137 31 π 0.105 0.01
    A2 SAS 137 137 31 π 0.105 0.01
    B1 DES 193 193 48 π 0.067 0.005
    B2 SAS 193 193 24 0.5π 0.067 0.005
    B3 SAS 193 193 48 π 0.067 0.005
    B4 SAS 193 193 96 0.067 0.005
    C1 DES 249 249 61 π 0.052 0.005
    C2 SAS 249 249 61 π 0.052 0.005
    下载: 导出CSV
  • [1] 杜磊, 宁方飞.高亚临界雷诺数圆柱绕流的尺度自适应模拟[J].力学学报, 2014, 46(4):487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404001.htm

    DU L, NING F F.Scale adaptive simulation of flows around a circular cylinder at high sub-critical Reynolds number[J].Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):487-496(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404001.htm
    [2] TRAVIN A, SHUR M, SPALART P, et al.On URANS solutions with LES-like behavior[C]//Congress on Computational Methods in Applied Sciences and Engineering, 2004.
    [3] FUREBY C.Towards the use of large eddy simulation in engineering[J].Progress in Aerospace Sciences, 2008, 44(6):381-396. doi: 10.1016/j.paerosci.2008.07.003
    [4] MENTER F R, EGOROV Y.The scale-adaptive simulation method for unsteady turbulent flow predictions.Part 1:Theory and model description[J].Flow, Turbulence and Combustion, 2010, 85(1):113-138. doi: 10.1007/s10494-010-9264-5
    [5] EGOROV Y, MENTER F R, LECHNER R, et al.The scale-adaptive simulation method for unsteady turbulent flow predictions.Part 2:Application to complex flows[J].Flow, Turbulence and Combustion, 2010, 85(1):139-165. doi: 10.1007/s10494-010-9265-4
    [6] 李钊, 陈海昕, 张宇飞.基于k-kL两方程湍流模式的尺度自适应模拟[J].工程力学, 2016, 33(12):26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201612003.htm

    LI Z, CHEN H X, ZHANG Y F.Scale adaptive simulation based on a k-kL two-equation turbulence model[J].Engineering Mechanics, 2016, 33(12):26-35(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201612003.htm
    [7] 许常悦, 倪竹青, 孙智, 等.尺度自适应模拟和大涡模拟的关联性分析[J].气体物理, 2018, 14(2):49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QTWL201802005.htm

    XU C Y, NI Z Q, SUN Z, et al.Analysis of the relationships between scale-adaptive and large-eddy simulation[J].Physics of Gases, 2018, 14(2):49-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QTWL201802005.htm
    [8] 郑玮琳, 阎超.XY-SAS模型中不同网格尺度限制器的影响分析[J].北京航空航天大学学报, 2014, 40(12):1725-1729. doi: 10.13700/j.bh.1001-5965.2013.0742

    ZHENG W L, YAN C.Influence analysis on grid scale limiter of XY-SAS model[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12):1725-1729(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0742
    [9] 杨振东, 谷正气.基于尺度自适应模拟的汽车天窗风振噪声特性分析[J].机械工程学报, 2016, 12(52):107-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201612015.htm

    YANG Z D, GU Z Q.Analysis of car sunroof buffeting noise based on scale-adaptive simulation[J].Journal of Mechanical Engineering, 2016, 12(52):107-117(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201612015.htm
    [10] NORBERG C.Pressure forces on a circular cylinder in cross flow[C]//International Union of Theoretical and Applied Mechanics Symposium Bluff-Body Wakes, Dynamics and Instabilities.Berlin: Springer, 1993: 275-278.
    [11] ONG L, WALLACE J.The velocity field of the turbulent very near wake of a circular cylinder[J].Experiments in Fluids, 1996, 20(6):441-453. doi: 10.1007/BF00189383
    [12] LOURENCO L M, SHIH C.Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study[Z].Private Communication, 1993.
    [13] KRAVCHENKO A G, MOIN P.Numerical studies of flow over a circular cylinder at ReD=3 900[J].Physics of Fluids, 2000, 12(2):403-417. doi: 10.1063/1.870318
    [14] FRANKE J, FRANK W.Large eddy simulation of the flow past a circular cylinder at ReD=3 900[J].Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10):1191-1206. doi: 10.1016/S0167-6105(02)00232-5
    [15] MANI A, MOIN P, WANG M.Computational study of optical distortions by separated shear layers and turbulent wakes[J].Journal of Fluid Mechanics, 2009, 625(7):273-298.
    [16] OUVRARD H, KOOBUS B, DERVIEUX A, et al.Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids[J].Computers & Fluids, 2010, 39:1083-1094.
    [17] WORNOM S, OUVRARD H, SALVETTI M V, et al.Variational multiscale large eddy simulations of the flow past a circular cylinder:Reynolds number effects[J].Computers & Fluids, 2011, 47(1):44-50.
    [18] DMITRY A L, IVAR S E, KJELL E R.Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OPENFOAM toolbox[J].Flow, Turbulence and Combustion, 2012, 89(4):491-518. doi: 10.1007/s10494-012-9405-0
    [19] SHIM Y M, SHARMA R N, RICHARDS P J.Numerical study of the flow over a circular cylinder in the near wake at Reynolds number 3900[C]//39th AIAA Fluid Dynamics Conference.Reston: AIAA, 2013: 2009-4160.
    [20] PARNAUDEU P, CARLIER J, HEITZ D, et al.Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J].Physics of Fluids, 2008, 20(8):085101. doi: 10.1063/1.2957018
    [21] STRELETS M.Detached eddy simulation of massively separated flows[C]//39th AIAA Aerospace Science Meeting and Exhibit.Reston: AIAA, 2001: 1-18.
    [22] XU C Y, SUN Z, ZHANG Y T, et al.Improvement of the scale-adaptive simulation technique based on a compensated strategy[J].European Journal of Mechanics/B Fluids, 2020, 81:1-14. doi: 10.1016/j.euromechflu.2020.01.002
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  700
  • HTML全文浏览量:  122
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-02
  • 录用日期:  2020-03-27
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答