留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类X-51A飞行器纵向机动数值虚拟飞行仿真

王胜 王强 林博希 阎超

王胜, 王强, 林博希, 等 . 类X-51A飞行器纵向机动数值虚拟飞行仿真[J]. 北京航空航天大学学报, 2021, 47(1): 97-105. doi: 10.13700/j.bh.1001-5965.2019.0618
引用本文: 王胜, 王强, 林博希, 等 . 类X-51A飞行器纵向机动数值虚拟飞行仿真[J]. 北京航空航天大学学报, 2021, 47(1): 97-105. doi: 10.13700/j.bh.1001-5965.2019.0618
WANG Sheng, WANG Qiang, LIN Boxi, et al. Longitudinal maneuver simulation of an X-51A-like aircraft based on numerical virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 97-105. doi: 10.13700/j.bh.1001-5965.2019.0618(in Chinese)
Citation: WANG Sheng, WANG Qiang, LIN Boxi, et al. Longitudinal maneuver simulation of an X-51A-like aircraft based on numerical virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 97-105. doi: 10.13700/j.bh.1001-5965.2019.0618(in Chinese)

类X-51A飞行器纵向机动数值虚拟飞行仿真

doi: 10.13700/j.bh.1001-5965.2019.0618
基金项目: 

国家自然科学基金 11721202

详细信息
    作者简介:

    王胜 男, 博士研究生。主要研究方向:计算流体力学

    阎超  男, 博士, 教授, 博士生导师。主要研究方向:计算流体力学

    通讯作者:

    阎超, E-mail: yanchao@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Longitudinal maneuver simulation of an X-51A-like aircraft based on numerical virtual flight

Funds: 

National Natural Science Foundation of China 11721202

More Information
  • 摘要:

    吸气式高超声速飞行器在机动过程中,由于构型复杂,气动特性呈现强烈的非定常特性。传统基于数据库或气动力模型的飞行仿真不能准确描述机动过程中复杂的气动特性和运动规律。针对这一问题,基于现代软件分布式、模块化的发展趋势,建立了一个高效的数值虚拟飞行仿真平台。利用该平台,对一种类X-51A外形的吸气式高超声速飞行器开展了纵向机动闭环数值仿真,并与工程方法的结果进行了对比。研究发现:对于类X-51A外形的吸气式高超声速飞行器,在纵向拉起时,工程方法给出的结果可能不能完全反映非定常效应的影响。此时,应该采用更为精确的虚拟飞行方法来研究飞行器的闭环响应特性。此外,借助该仿真平台还研究了舵回路时间常数对控制系统的影响,为控制律设计提供了一定的参考。

     

  • 图 1  不同环境下gRPC实现过程

    Figure 1.  Schematic diagram of gRPC implementation process in different environments

    图 2  Simulink/MICFD数值虚拟飞行仿真平台流程图

    Figure 2.  Flowchart of Simulink/MICFD numerical virtual flight simulation platform

    图 3  纵向姿态控制

    Figure 3.  Longitudinal attitude control

    图 4  挂载物气动力系数、气动力矩系数随时间变化曲线

    Figure 4.  Time history of aerodynamic coefficients and aerodynamic moment coefficients for store

    图 5  挂载物线位移、角位移随时间变化曲线

    Figure 5.  Time history of linear and angular displacement for store

    图 6  计算模型及对称面网格

    Figure 6.  Computational model and symmetry plane grids

    图 7  不同时刻控制舵与机身动态重叠边界示意图

    Figure 7.  Schematic diagram of dynamic overlapping boundary of control rudder and airframe at different moments

    图 8  全机及控制舵俯仰力矩

    Figure 8.  Pitching moment of whole aircraft and control rudder

    图 9  除控制舵以外机身的俯仰力矩

    Figure 9.  Pitching moment of airframe except control rudder

    图 10  机动过程中典型时刻的流场结构(Td=0.1)

    Figure 10.  Typical-moment flow field structure during maneuvering process (Td=0.1)

    图 11  迎角响应过程

    Figure 11.  Response process of angle of attack

    图 12  舵偏角响应过程

    Figure 12.  Response process of rudder deflection angle

    图 13  俯仰力矩时间历程

    Figure 13.  Time history of pitching moment

    图 14  不同时间常数下迎角响应过程

    Figure 14.  Response process of angle of attack under different time constants

    图 15  不同时间常数下舵偏角响应过程

    Figure 15.  Response process of rudder deflection angle under different time constants

    图 16  不同时间常数下俯仰力矩时间历程

    Figure 16.  Time history of pitching moment under different time constants

    表  1  不同Td下控制系统的性能指标

    Table  1.   Performance indexes of control system under different Td

    Td td tr tp ts(±5%) σ%
    0 0.355 0.430 0.808 0.59 4.20
    0.05 0.366 0.361 0.749 1.44 5.96
    0.1 0.388 0.326 0.856 2.01 16.0
    0.2 0.382 0.320 0.787 6.02 31.6
    下载: 导出CSV
  • [1] HANK J M, MURPHY J S, MUTZMAN R C.The X-51A scramjet engine flight demonstration program: AIAA-2008-2540[R].Reston: AIAA, 2008.
    [2] 余华峰, 刘宏康, 陈树生, 等.类X-51A飞行器非定常湍流精细模拟[J].北京航空航天大学学报, 2019, 45(3):624-632. doi: 10.13700/j.bh.1001-5965.2018.0409

    YU H F, LIU H K, CHEN S S, et al.High-resolution unsteady turbulence simulation of an X-51A-like aircraft[J].Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3):624-632(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0409
    [3] SALAS M D.Digital flight:The last CFD aeronautical grand challenge[J].Journal of Scientific Computing, 2006, 28(2-3):479-505. doi: 10.1007/s10915-006-9087-7
    [4] CAI H M.Virtual flight simulation of a dual rotor micro air vehicle[J].International Journal of Computational Fluid Dynamics, 2015, 29(2):192-198. doi: 10.1080/10618562.2015.1016426
    [5] CHEN Q, CHEN J Q, XIE Y F, et al.Study and application of virtual flight simulation for rolling control of vehicles[J].Journal of Computational Science, 2017, 21:77-85. doi: 10.1016/j.jocs.2017.05.009
    [6] 张来平, 马戎, 常兴华, 等.虚拟飞行中气动、运动和控制耦合的数值模拟技术[J].力学进展, 2014, 44:376-417. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201400010.htm

    ZHANG L P, MA R, CHANG X H, et al.Review of aerodynamics/kinematics/flight control coupling method in virtual flight simulations[J].Advances in Mechanics, 2014, 44:376-417(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201400010.htm
    [7] 达兴亚, 陶洋, 赵忠良.基于预估校正和嵌套网格的虚拟飞行数值模拟[J].航空学报, 2012, 33(6):977-983. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206003.htm

    DA X Y, TAO Y, ZHAO Z L.Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(6):977-983(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206003.htm
    [8] ZHANG L P, CHANG X H, MA R, et al.A CFD-based numerical virtual flight simulator and its application in control law design of a maneuverable missile model[J].Chinese Journal of Aeronautics, 2019, 32(12):2577-2591. doi: 10.1016/j.cja.2019.07.001
    [9] 陈琦, 郭勇颜, 谢昱飞, 等.PID控制器与CFD的耦合模拟技术研究及应用[J].航空学报, 2016, 37(8):2507-2516. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608017.htm

    CHEN Q, GUO Y Y, XIE Y F, et al.Research and application of coupled simulation techniques of PID controller and CFD[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2507-2516(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608017.htm
    [10] 李锋, 杨云军, 刘周, 等.飞行器气动/飞行/控制一体化耦合模拟技术[J].空气动力学学报, 2015, 33(2):156-161. doi: 10.7638/kqdlxxb-2014.0097

    LI F, YANG Y J, LIU Z, et al.Integrative simulation technique of coupled aerodynamics and flight dynamics with control law on a vehicle[J].Acta Aerodynamica Sinica, 2015, 33(2):156-161(in Chinese). doi: 10.7638/kqdlxxb-2014.0097
    [11] MORTON S A, EYMANN T A, LAMBERSON S, et al.Relative motion simulations using an overset multi-mesh paradigm with kestrel v3[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2012.
    [12] 张来平, 邓小刚, 张涵信.动网格生成技术及非定常计算方法进展综述[J].力学进展, 2010, 40:424-447. doi: 10.6052/1000-0992-2010-4-J2009-123

    ZHANG L P, DENG X G, ZHANG H X.Reviews of moving grid generation techniques and numerical methods for unsteady flow[J].Advances in Mechanics, 2010, 40:424-447(in Chinese). doi: 10.6052/1000-0992-2010-4-J2009-123
    [13] CHEN Q, YUAN X X, WANG X, et al.Study of saddle-node bifurcation for longitudinal flight with CFD/RBD technique[J].Journal of Computational Science, 2018, 29:153-162. doi: 10.1016/j.jocs.2018.10.006
    [14] CHATURVEDI N A, SANYAL A K, MCCLAMROCH N H.Rigid-body attitude control[J].Control Systems IEEE, 2011, 31(3):30-51. doi: 10.1109/MCS.2011.940459
    [15] WALLNER E M, WELL K H.Attitude control of a reentry vehicle with internal dynamics[J].Journal of Guidance, Control, and Dynamics, 2003, 26(6):846-854. doi: 10.2514/2.6928
    [16] 席柯, 袁武, 阎超, 等.基于闭环控制的带翼导弹虚拟飞行数值模拟[J].航空学报, 2014, 35(3):634-642. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201403004.htm

    XI K, YUAN W, YAN C, et al.Virtual flight numerical simulation of the basic finner projectile with closed loop[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):634-642(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201403004.htm
    [17] WANG W, YAN C, WANG S, et al.An efficient, robust and automatic overlapping grid assembly approach for partitioned multi-block structured grids[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 233(4):1217-1236. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112887351.html
    [18] ZHONG K, YAN C, CHEN S S, et al.Numerical study on the aerothermodynamics of different heatshield configurations for Mars entry capsules[J].Acta Astronautica, 2019, 157:189-198. doi: 10.1016/j.actaastro.2018.12.025
    [19] 王吉阳, 杨学良.远程过程调用的设计与实现[J].计算机工程与设计, 1991(2):71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ199102011.htm

    WANG J Y, YANG X L.The design and implementation of remote procedure call[J].Computer Engineering and Design, 1991(2):71-79(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ199102011.htm
    [20] BISWAS R, LU X Y, PANDA D K.Accelerating tensor flow with adaptive RDMA-based gRPC[C]//Proceedings of the 25th International Conference on High Performance Computing.Piscataway: IEEE Press, 2018: 2-11.
    [21] 刘君, 刘瑜, 陈泽栋.非结构变形网格和离散几何守恒律[J].航空学报, 2016, 37(8):2395-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608005.htm

    LIU J, LIU Y, CHEN Z D.Unstructured deforming mesh and discrete geometric conservation law[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2395-2407(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608005.htm
    [22] 李跃军.飞行器强迫运动和自由飞的非定常流动数值模拟[D].北京: 北京航空航天大学, 2007: 56-63.

    LI Y J.Numerical simulation of unsteady flows around aircrafts experiencing forced motion and free flight[D].Beijing: Beihang University, 2007: 56-63(in Chinese).
    [23] 岳瑞华, 徐中英, 周涛.导弹控制原理[M].北京:北京航空航天大学出版社, 2016:17-41.

    YUE R H, XU Z Y, ZHOU T.Control principle of missiles[M].Beijing:Beihang University Press, 2016:17-41(in Chinese).
    [24] 吴森堂.飞行控制系统[M].2版.北京:北京航空航天大学出版社, 2013:180-191.

    WU S T.Flight control system[M].2nd ed.Beijing:Beihang University Press, 2013:180-191(in Chinese).
    [25] HALL L H, PARTHASARATHY V.Validation of an automated Chimera/6-DOF methodology for multiple moving body problems: AIAA-1998-0767[R].Reston: AIAA, 1998.
    [26] 刘雪松.X-51A高超声速飞行器三维重建及气动/隐身特性分析[D].南京: 南京航空航天大学, 2015: 9-18.

    LIU X S.Three-dimensional reconstruction and analysis aerodynamic and stealth characteristic of X-51A hypersonic vehicle[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 9-18(in Chinese).
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  138
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 录用日期:  2020-02-21
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答