留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山区机场高填方地基变形分析

冯兴 姚仰平 李汝宁 张献民

冯兴, 姚仰平, 李汝宁, 等 . 山区机场高填方地基变形分析[J]. 北京航空航天大学学报, 2021, 47(10): 2013-2023. doi: 10.13700/j.bh.1001-5965.2020.0510
引用本文: 冯兴, 姚仰平, 李汝宁, 等 . 山区机场高填方地基变形分析[J]. 北京航空航天大学学报, 2021, 47(10): 2013-2023. doi: 10.13700/j.bh.1001-5965.2020.0510
FENG Xing, YAO Yangping, LI Runing, et al. Deformation of high-fill subgrade of airport in mountain areas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2013-2023. doi: 10.13700/j.bh.1001-5965.2020.0510(in Chinese)
Citation: FENG Xing, YAO Yangping, LI Runing, et al. Deformation of high-fill subgrade of airport in mountain areas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2013-2023. doi: 10.13700/j.bh.1001-5965.2020.0510(in Chinese)

山区机场高填方地基变形分析

doi: 10.13700/j.bh.1001-5965.2020.0510
基金项目: 

国家自然科学基金 51808547

国家自然科学基金 11672015

天津市教委科研计划 2019KJ124

中央高校基本科研业务费专项资金 3122014C014

中国民航大学科研启动基金 2013QD12X

详细信息
    通讯作者:

    冯兴, E-mail: fxing_sjz@foxmail.com

  • 中图分类号: TU43

Deformation of high-fill subgrade of airport in mountain areas

Funds: 

National Natural Science Foundation of China 51808547

National Natural Science Foundation of China 11672015

Tianjin Municipal Education Commission Scientific Research Project 2019KJ124

the Foundamental Research Funds for the Central Universities 3122014C014

Research Startup Fund of Civil Aviation University of China 2013QD12X

More Information
  • 摘要:

    目前山区机场大量采用高填方工程,高填方地基沉降变形问题是个亟待解决的重要问题。首先,基于统一硬化(UH)模型,通过研究含石量与内摩擦角和黏聚力的关系,并基于扩展SMP准则和变换应力,将含石量引入到UH模型中,建立了考虑含石量的UH模型;应用当前屈服面与平均主应力轴交点的变化规律作为考虑含石量UH模型加卸载的判断准则,实现了硬化和软化的统一考虑;采用半隐式回映应力更新算法,将加卸载判断准则应用到应力更新算法中,实现了考虑含石量UH模型的有限元应用。其次,应用考虑含石量UH模型的有限元程序,对土石混合料的大型三轴试验进行了计算分析,计算结果和实测结果进行对比,验证了有限元程序的有效性。最后,应用考虑含石量UH模型的有限元程序,对山区机场高填方地基进行了三维有限元分析,得到了地基沉降监测点的竖向位移随时间的变化曲线,并与不考虑含石量UH模型、修正剑桥(MCC)模型计算得到的曲线及工程实测数据进行了比较,得到了高填方地基的竖向位移云图、侧向位移云图、孔隙水压力云图和超静孔隙水压力随时间的变化曲线,从而得到了机场高填方地基的位移和超静孔隙水压力变化规律,说明了考虑含石量UH模型在分析山区机场高填方地基变形方面的合理性。

     

  • 图 1  含石量与内摩擦角增量、黏聚力的关系

    Figure 1.  Relationship among stone content, internal friction angle increment and cohesion

    图 2  剪应力和垂直应力

    Figure 2.  Shear stress and vertical stress

    图 3  nn+1时刻当前屈服面与轴交点

    Figure 3.  Intersection point of current yield surface and axis at n and n+1 moment

    图 4  应力更新算法流程

    Figure 4.  Flowchart of stress update algorithm

    图 5  有限元网格

    Figure 5.  Finite element mesh

    图 6  应力-应变曲线

    Figure 6.  Stress-strain curves

    图 7  截面尺寸

    Figure 7.  Size of section

    图 8  有限元网格

    Figure 8.  Finite element mesh

    图 9  沉降监测点上竖向位移随时间的变化曲线

    Figure 9.  Change curves of vertical displacement at settlement monitoring point with time

    图 10  地基表面和对称轴交点上的竖向位移随时间的变化曲线

    Figure 10.  Change of vertical displacement at the intersection of subgrade surface and symmetry axis with time

    图 11  不同填筑高度下地基表面各点的竖向位移曲线

    Figure 11.  Vertical displacement curves of each point on the surface of subgrade under different filling heights

    图 12  第1层填土后地基表面各点的竖向位移云图

    Figure 12.  Vertical displacement contour of each point on the surface of subgrade after the first-layer fill

    图 13  侧向位移云图

    Figure 13.  Contour of lateral displacement

    图 14  超静孔隙水压力云图

    Figure 14.  Contour of excess pore water pressure

    图 15  超静孔隙水压力随时间的变化曲线

    Figure 15.  Change of excess pore water pressure with time

    表  1  土体材料参数

    Table  1.   Soil material parameters

    参数 数值
    M 1.17
    λ 0.03
    κ 0.01
    ν 0.3
    e0 0.89
    c/kPa 56.37
    PR/% 51.8
    下载: 导出CSV

    表  2  填土土体材料参数

    Table  2.   Soil material parameters of filling

    土层 E/MPa ν γ/(kN·m-3)
    填土层1 40 0.2 22
    填土层2 35 0.2 21.6
    填土层3 28 0.3 21.1
    注: γ为重度,E为弹性模量。
    下载: 导出CSV

    表  3  地基土体材料参数

    Table  3.   Soil material parameters of subgrade

    土层 M λ κ ν e0 c/kPa PR/% γ/(kN·m-3) 渗透率/(10-4 m·d-1)
    下层地基 1.42 0.22 0.022 0.2 0.81 40 40 21 1
    上层地基 0.98 0.4 0.04 0.2 0.85 18 0 18.5 2
    下载: 导出CSV
  • [1] 刘宏, 李攀峰, 张倬元. 九寨黄龙机场高填方地基工后沉降预测[J]. 岩土工程学报, 2005, 27(1): 90-93. doi: 10.3321/j.issn:1000-4548.2005.01.015

    LIU H, LI P F, ZHANG Z Y. Prediction of the post-construction settlement of the high embankment of Jiuzhai-Huanglong airport[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 90-93(in Chinese). doi: 10.3321/j.issn:1000-4548.2005.01.015
    [2] 李秀珍, 许强, 孔纪名, 等. 九寨黄龙机场高填方地基沉降的数值模拟分析[J]. 岩石力学与工程学报, 2005, 24(12): 2188-2193. doi: 10.3321/j.issn:1000-6915.2005.12.031

    LI X Z, XU Q, KONG J M, et al. Numerical modeling analysis of settlements of high fill foundation for Jiuzhai-Huanglong airport[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2188-2193(in Chinese). doi: 10.3321/j.issn:1000-6915.2005.12.031
    [3] 陈涛, 郭院成, 谢春庆. 平坦地基上山区高填方路堤变形及稳定性分析[J]. 郑州大学学报(工学版), 2009, 30(3): 39-43. doi: 10.3969/j.issn.1671-6833.2009.03.010

    CHEN T, GUO Y C, XIE C Q. Analysis of deformation and stability of high embankment in flat ground of mountainous area[J]. Journal of Zhengzhou University (Engineering Science), 2009, 30(3): 39-43(in Chinese). doi: 10.3969/j.issn.1671-6833.2009.03.010
    [4] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in state wetter than critical[J]. Geotechnique, 1963, 13(3): 22-53. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg42/ref42&dbid=16&doi=10.1139%2Fcgj-2015-0166&key=10.1680%2Fgeot.1963.13.3.211
    [5] YAO Y P, HOU W, ZHOU A N. UH model: Three-dimensional unified hardening model for overconsolidated clays[J]. Geotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [6] 姚仰平, 侯伟, 周安楠. 基于伏斯列夫面的超固结土模型[J]. 中国科学(E辑), 2007, 37(11): 1417-1429.

    YAO Y P, HOU W, ZHOU A N. Constitutive model of over-consolidated clay based on improved Hvorslev envelope[J]. Science in China, Ser. E, 2007, 37(11): 1417-1429(in Chinese).
    [7] 姚仰平, 李自强, 侯伟, 等. 基于改进伏斯列夫线的超固结土本构模型[J]. 水利学报, 2008, 39(11): 1244-1250. doi: 10.3321/j.issn:0559-9350.2008.11.013

    YAO Y P, LI Z Q, HOU W, et al. Constitutive model of over-consolidated clay based on improved Hvorslev envelope[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1244-1250(in Chinese). doi: 10.3321/j.issn:0559-9350.2008.11.013
    [8] YAO Y P, LUO T, SUN D A, et al. A simple 3-D constitutive model for both clay and sand[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 240-246. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC200202026.htm
    [9] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2016: 145-146.

    LI G X. Advanced soil mechnics[M]. Beijing: Tsinghua University Press, 2016: 145-146(in Chinese).
    [10] 郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998: 187-188.

    GUO Q G. Engineering characteristics and application of coarse-grained soil[M]. Zhengzhou: Yellow River Water Conservancy Press, 1998: 187-188(in Chinese).
    [11] LINDQUIST E S. The strength and deformation properties of mélange[D]. Berkeley: University of California at Berkeley, 1994: 45-49.
    [12] IRFAN T Y, TANG K Y. Effect of the coarse fraction on the shear strength of colluviums in Hong Kong[M]. Hong Kong: Geotechnical Engineering Office, 1993: 58-60.
    [13] MEDLEY E W. Systematic characterization of mélange bimrocks and other chaotic soil/rock mixtures[J]. Felsbau-Rock Soil Engineering, 1999, 17(3): 152-162.
    [14] 徐文杰, 胡瑞林, 岳仲崎, 等. 基于数字图像分析及大型直剪试验的土石混合体含石量与抗剪强度关系研究[J]. 岩石力学与工程学报, 2008, 27(5): 996-1007. doi: 10.3321/j.issn:1000-6915.2008.05.016

    XU W J, HU R L, YUE Z Q, et al. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 996-1007(in Chinese). doi: 10.3321/j.issn:1000-6915.2008.05.016
    [15] 涂义亮, 刘新荣, 任青阳, 等. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm

    TU Y L, LIU X R, REN Q Y, et al. The effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate[J]. Rock and Soil Mechanics, 2020, 41(12): 1-10(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm
    [16] 冯兴, 姚仰平, 霍海峰. 黄土隧洞变形及稳定性分析[J]. 重庆交通大学学报(自然科学版), 2017, 36(7): 21-28. doi: 10.3969/j.issn.1674-0696.2017.07.04

    FENG X, YAO Y P, HUO H F. Deformation and stability of loess tunnel[J]. Journal of Chongqing Jiaotong University(Natural Science), 2017, 36(7): 21-28(in Chinese). doi: 10.3969/j.issn.1674-0696.2017.07.04
    [17] YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123. doi: 10.1061/(ASCE)0733-9399(2007)133:10(1115)
    [18] 姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学(E辑), 2004, 34(11): 1283-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm

    YAO Y P, LU D C, ZHOU A N, et al. Generalized nonlinear failure theory transformed stress space for geomaterials[J]. Science in China, Ser. E, 2004, 34(11): 1283-1299(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm
    [19] 姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. doi: 10.3321/j.issn:1000-4548.2005.01.003

    YAO Y P, LU D C, ZHOU A N. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29(in Chinese). doi: 10.3321/j.issn:1000-4548.2005.01.003
    [20] 熊文林. 非关联塑性切线刚度矩阵的对称表示[J]. 应用数学和力学, 1986, 7(11): 983-991. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX198611003.htm

    XIONG W L. Symmetric formulation of tamgential stiffness for non-associated plasticity[J]. Applied Mathematics and Mechanics, 1986, 7(11): 983-991(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX198611003.htm
    [21] 罗汀, 姚仰平, 侯伟. 土的本构关系[M]. 北京: 人民交通出版社, 2010: 223-226.

    LUO T, YAO Y P, HOU W. Soil constitutive models[M]. Beijing: China Communication Press, 2010: 223-226(in Chinese).
    [22] 朱伯芳. 有限单元法原理与应用[M]. 北京: 中国水利水电出版社, 2018: 357-358.

    ZHU B F. Principle and application of finite element method[M]. Beijing: China Water Power Press, 2018: 357-358(in Chinese).
    [23] 姚仰平, 冯兴, 黄祥, 等. UH模型在有限元分析中的应用[J]. 岩土力学, 2010, 31(1): 237-245. doi: 10.3969/j.issn.1000-7598.2010.01.041

    YAO Y P, FENG X, HUANG X, et al. Application of UH model to finite element analysis[J]. Rock and Soil Mechanics, 2010, 31(1): 237-245(in Chinese). doi: 10.3969/j.issn.1000-7598.2010.01.041
    [24] 严秋荣, 孙海兴, 邓卫东, 等. 红层软岩土石混合填料的抗剪强度特性研究[J]. 公路交通技术, 2005(3): 31-35. doi: 10.3969/j.issn.1009-6477.2005.03.010

    YAN Q R, SUN H X, DENG W D, et al. Study on shear strength characteristics of red layered weak soil filling[J]. Technology of Highway and Transport, 2005(3): 31-35(in Chinese). doi: 10.3969/j.issn.1009-6477.2005.03.010
    [25] 李群善. 康定机场北段高填方边坡稳定性及场道沉降变形研究[D]. 成都: 西南交通大学, 2008: 48. http://cdmd.cnki.com.cn/Article/CDMD-10613-2008178792.htm

    LI Q S. The stability of high-fill slope and the pavement deformation on the north of Kangding airport[D]. Chengdu: Southwest Jiaotong University, 2008: 48(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10613-2008178792.htm
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  66
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 录用日期:  2021-01-24
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答