留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于G1-变异系数-KL改进TOPSIS雷达对抗干扰有效性评估

李志军 向建军 盛涛 肖冰松

李志军, 向建军, 盛涛, 等 . 基于G1-变异系数-KL改进TOPSIS雷达对抗干扰有效性评估[J]. 北京航空航天大学学报, 2021, 47(12): 2571-2578. doi: 10.13700/j.bh.1001-5965.2020.0493
引用本文: 李志军, 向建军, 盛涛, 等 . 基于G1-变异系数-KL改进TOPSIS雷达对抗干扰有效性评估[J]. 北京航空航天大学学报, 2021, 47(12): 2571-2578. doi: 10.13700/j.bh.1001-5965.2020.0493
LI Zhijun, XIANG Jianjun, SHENG Tao, et al. G1-variation-coefficient-KL based TOPSIS radar jamming effectiveness evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2571-2578. doi: 10.13700/j.bh.1001-5965.2020.0493(in Chinese)
Citation: LI Zhijun, XIANG Jianjun, SHENG Tao, et al. G1-variation-coefficient-KL based TOPSIS radar jamming effectiveness evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2571-2578. doi: 10.13700/j.bh.1001-5965.2020.0493(in Chinese)

基于G1-变异系数-KL改进TOPSIS雷达对抗干扰有效性评估

doi: 10.13700/j.bh.1001-5965.2020.0493
基金项目: 

航空科学基金 20175596020

详细信息
    通讯作者:

    向建军, E-mail: 1812268525@qq.com

  • 中图分类号: TN97

G1-variation-coefficient-KL based TOPSIS radar jamming effectiveness evaluation

Funds: 

Aeronautical Science Foundation of China 20175596020

More Information
  • 摘要:

    干扰效能评估作为多属性决策问题时,为解决传统的逼近理想解排序法(TOPSIS)在进行雷达对抗效能评估时过于客观而不能充分体现评估者意志,并且在使用过程中仅考虑指标间欧氏距离导致某些处于正负理想解中垂线上的点无法分辨的问题,提出一种G1-变异系数-KL改进TOPSIS雷达对抗干扰有效性评估算法。该算法利用G1法和变异系数法分别求得主观和客观权重,并引入差异系数的概念充分反映主客观程度,利用相对熵解决位于正负理想解中垂线上的点无法排序的问题。通过仿真实验可以发现,提出的算法在评价干扰有效性时性能优于传统算法。

     

  • 图 1  雷达对抗干扰有效性评估2层指标

    Figure 1.  Two levels indicator of radar anti-jamming effectiveness evaluation

    图 2  G1-变异系数-KL改进TOPSIS算法流程

    Figure 2.  Flowchart of G1-variation-coefficient-KL TOPSIS algorithm

    图 3  不同算法的雷达对抗有效性评估结果

    Figure 3.  Radar anti-jamming effectiveness evaluation results of different algorithms

    表  1  雷达反馈数据

    Table  1.   Radar feedback data

    评估对象 脉冲重复频率/kHz 带宽/MHz 脉冲压缩比 脉冲宽度/μs 波束偏移角度/(°) 峰值功率/kW 波束驻留时间/s
    1 4.103 1.056 34.677 34.454 0.787 21.385 1.769
    2 5.053 1.083 48.720 44.550 0.351 21.788 1.123
    3 6.855 2.849 198.153 70.137 0.637 24.623 1.593
    4 14.238 5.595 81.418 14.525 0.647 47.285 1.646
    5 10.176 1.864 153.256 77.489 0.183 53.059 2.011
    下载: 导出CSV

    表  2  归一化评估矩阵

    Table  2.   Normalized evaluation matrix

    评估对象 a1 a2 a3 a4 a5 a6 a7
    1 0.478 0.622 0.263 0.631 0.128 0.157 0.288
    2 0.304 0.278 0.268 0.571 0.181 0.161 0.372
    3 0.431 0.504 0.303 0.459 0.734 0.424 0.586
    4 0.445 0.511 0.583 0 0.301 0.832 0.121
    5 0.544 0.145 0.654 0.253 0.567 0.277 0.648
    下载: 导出CSV

    表  3  G1-变异系数-KL改进TOPSIS算法有效性评估贴近度

    Table  3.   Effectiveness evaluation closeness using G1-variation-coefficient-KL TOPSIS

    评估对象 1 2 3 4 5
    贴近度 0.419 0.513 0.585 0.476 0.386
    下载: 导出CSV

    表  4  极大熵法权重有效性贴近度

    Table  4.   Effectiveness evaluation closeness using maximum entropy to calculate weight

    评估对象 1 2 3 4 5
    贴近度 0.410 0.574 0.582 0.440 0.347
    下载: 导出CSV

    表  5  传统TOPSIS算法的有效性贴近度

    Table  5.   Effectiveness evaluation closeness traditional TOPSIS algorithm

    评估对象 1 2 3 4 5
    贴近度 0.410 0.499 0.596 0.464 0.415
    下载: 导出CSV

    表  6  雷达对抗干扰有效性评估结果

    Table  6.   Anti-jamming effectiveness evaluation results

    评估对象 G1-变异系数-KL改进TOPSIS算法 极大熵法赋权 传统TOPSIS算法
    贴近度 排序结果 贴近度 排序结果 贴近度 排序结果
    1 0.419 4 0.410 4 0.410 5
    2 0.513 2 0.574 2 0.499 2
    3 0.585 1 0.582 1 0.596 1
    4 0.476 3 0.440 3 0.464 3
    5 0.386 5 0.347 5 0.415 4
    下载: 导出CSV
  • [1] 崔炳福. 雷达对抗干扰有效性评估[M]. 北京: 电子工业出版社, 2017: 4-10.

    CUI B F. Evaluation of radar counter jamming effectiveness[M]. Beijing: Publishing House of Electronics Industry, 2017: 4-10(in Chinese).
    [2] 王博阳. 雷达对抗在线效能评估技术研究[D]. 西安: 西安电子科技大学, 2018: 10-20.

    WANG B Y. Research on the online effectiveness evaluation of radar countermeasure[D]. Xi'an: Xidian University, 2018: 10-20(in Chinese).
    [3] 董家隆, 李桂祥, 陈辉. 基于改进ADC模型的天波雷达作战效能评估[J]. 雷达科学与技术, 2017, 15(2): 126-130. doi: 10.3969/j.issn.1672-2337.2017.02.003

    DONG J L, LI G X, CHEN H. Operational effectiveness evaluation of sky-wave over-the-horizon radar based on improved ADC model[J]. Radar Science and Technology, 2017, 15(2): 126-130(in Chinese). doi: 10.3969/j.issn.1672-2337.2017.02.003
    [4] 徐沙, 张洁. 一种基于层次分析法的雷达抗干扰效能评估方法[J]. 航天电子对抗, 2016, 32(3): 13-15. doi: 10.3969/j.issn.1673-2421.2016.03.004

    XU S, ZHANG J. An evaluation method of radar anti-jamming efficiency based on analytical hierarchy process[J]. Aerospace Electronic Warfare, 2016, 32(3): 13-15(in Chinese). doi: 10.3969/j.issn.1673-2421.2016.03.004
    [5] 石亮, 黄仕家, 邓有为. 基于云模型的机载电子对抗系统效能评估方法[J]. 弹箭与制导学报, 2006, 26(3): 311-314. doi: 10.3969/j.issn.1673-9728.2006.03.100

    SHI L, HUANG S J, DENG Y W. Effectiveness evaluation of airborne EW system based on cloud model[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(3): 311-314(in Chinese). doi: 10.3969/j.issn.1673-9728.2006.03.100
    [6] 史彦斌, 高宪军, 张安. 云理论在航空电子战系统效能评估中的应用[J]. 计算机工程与应用, 2009, 45(22): 241-243. doi: 10.3778/j.issn.1002-8331.2009.22.077

    SHI Y B, GAO X J, ZHANG A. Application of cloud theory on aviation EW system effectiveness evaluation[J]. Computer Engineering and Applications, 2009, 45(22): 241-243(in Chinese). doi: 10.3778/j.issn.1002-8331.2009.22.077
    [7] 李婧娇. 多功能电子战系统作战效能评估仿真[D]. 镇江: 江苏科技大学, 2010: 25-30.

    LI J J. Simulation of MFEW system's counterwork efficiency evaluation[D]. Zhenjiang: Jiangsu University of Science and Technology, 2010: 25-30(in Chinese).
    [8] QI Z F, WANG G S. Grey synthetic relational analysis method-based effectiveness evaluation of EWCC system with incomplete information[J]. Applied Mechanics and Materials, 2014, 638-640: 2409-2412. doi: 10.4028/www.scientific.net/AMM.638-640.2409
    [9] 张友益, 徐才宏, 等. 雷达对抗及反对抗作战能力评估与验证[M]. 北京: 国防工业出版社, 2019: 43-50.

    ZHANG Y Y, XU C H, et al. Radar countermeasure and countercountermeasure operational capability evaluation and verification[M]. Beijing: National Defense Industry Press, 2019: 43-50(in Chinese).
    [10] 吕志鹏, 吴鸣, 宋振浩, 等. 电能质量CRITIC-TOPSIS综合评价方法[J]. 电机与控制学报, 2020, 24(1): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202001017.htm

    LV Z P, WU M, SONG Z H, et al. Comprehensive evaluation of power quality on CRITIC-TOPSIS method[J]. Electric Machines and Control, 2020, 24(1): 137-144(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202001017.htm
    [11] 奚之飞, 徐安, 寇英信, 等. 基于改进GRA-TOPSIS的空战威胁评估[J]. 北京航空航天大学学报, 2020, 46(2): 388-397. doi: 10.13700/j.bh.1001-5965.2019.0207

    XI Z F, XU A, KOU Y X, et al. Air combat threat assessment based on improved GRA-TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 388-397(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0207
    [12] 史哲齐, 李继繁, 王悦, 等. 基于TOPSIS-AHP法的石化企业环境风险筛选研究[J]. 南开大学学报(自然科学版), 2020, 53(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-NKDZ202001004.htm

    SHI Z Q, LI J F, WANG Y, et al. Study on environmental risk screening of petrochemical enterprises based on TOPSIS-AHP[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2020, 53(1): 17-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NKDZ202001004.htm
    [13] GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: Harmony search[J]. Simulation, 2001, 76(2): 60-68. doi: 10.1177/003754970107600201
    [14] KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86. doi: 10.1214/aoms/1177729694
    [15] 赵萌, 邱菀华, 刘北上. 基于相对熵的多属性决策排序方法[J]. 控制与决策, 2010, 25(7): 1098-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201007030.htm

    ZHAO M, QIU W H, LIU B S. Relative entropy evaluation method for multiple attribute decision making[J]. Control and Decision, 2010, 25(7): 1098-1100(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201007030.htm
    [16] 鲍学英, 柴乃杰, 王起才. 基于G1法和改进DEA的铁路绿色施工节能措施综合效果研究[J]. 铁道学报, 2018, 40(10): 15-22. doi: 10.3969/j.issn.1001-8360.2018.10.003

    BAO X Y, CHAI N J, WANG Q C. Comprehensive effect of energy-saving measures on railway green construction based on G1 method and improved DEA models[J]. Journal of the China Railway Society, 2018, 40(10): 15-22(in Chinese). doi: 10.3969/j.issn.1001-8360.2018.10.003
    [17] 翁鑫锦. 基于机器学习的雷达干扰效能评估[D]. 成都: 电子科技大学, 2019: 5-30.

    WENG X J. Effectiveness evaluation of radar jamming based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 5-30(in Chinese).
    [18] 于亮, 方志耕, 吴利丰, 等. 基于灰色类别差异特性的评价指标客观权重极大熵配置模型[J]. 系统工程理论与实践, 2014, 34(8): 2065-2070. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201408015.htm

    YU L, FANG Z G, WU L F, et al. Maximum entropy configuration model of objective index weight based on grey category characteristics difference[J]. Systems Engineering-Theory & Practice, 2014, 34(8): 2065-2070(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201408015.htm
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  169
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 录用日期:  2020-12-25
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答