留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能源分解的用户用电行为模式分析

卢瑞瑞 于海阳 杨震 赖英旭 杨石松 周明

卢瑞瑞, 于海阳, 杨震, 等 . 基于能源分解的用户用电行为模式分析[J]. 北京航空航天大学学报, 2022, 48(2): 311-323. doi: 10.13700/j.bh.1001-5965.2020.0557
引用本文: 卢瑞瑞, 于海阳, 杨震, 等 . 基于能源分解的用户用电行为模式分析[J]. 北京航空航天大学学报, 2022, 48(2): 311-323. doi: 10.13700/j.bh.1001-5965.2020.0557
LU Ruirui, YU Haiyang, YANG Zhen, et al. User electricity consumption behavior mode analysis based on energy decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 311-323. doi: 10.13700/j.bh.1001-5965.2020.0557(in Chinese)
Citation: LU Ruirui, YU Haiyang, YANG Zhen, et al. User electricity consumption behavior mode analysis based on energy decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 311-323. doi: 10.13700/j.bh.1001-5965.2020.0557(in Chinese)

基于能源分解的用户用电行为模式分析

doi: 10.13700/j.bh.1001-5965.2020.0557
基金项目: 

国家自然科学基金 61671030

北京市长城学者计划 CIT & TCD20190308

中国博士后科学基金 2019M660377

详细信息
    通讯作者:

    杨震, E-mail: yangzhen@bjut.edu.cn

  • 中图分类号: V221+.3;TB553

User electricity consumption behavior mode analysis based on energy decomposition

Funds: 

National Natural Science Foundation of China 61671030

Beijing Great Wall Scholar CIT & TCD20190308

China Postdoctoral Science Foundation 2019M660377

More Information
  • 摘要:

    随着智能电网的普及和大数据技术的发展,利用用电数据分析用户的用电行为越来越受到关注,现存的能源分解方法无法满足实际应用中对分辨率和分解准确率的高要求,以及聚类分析方法过于粗糙没有充分挖掘每类电器的用电特点。提出了基于能源分解的用户用电行为分析方法。在判别式稀疏编码算法模型的基础上,针对L0正则项不易求解、L1正则项稀疏约束效果不理想的问题,提出用L1/2正则项稀疏约束进行能源分解,并且把用户之间的同质性作为正则项加入基础模型来修正模型的性能。基于能源分解的结果,使用用户单类电器的用电特征代替总用电特征精细化分析用户的用电行为,并改进传统的K-Mean聚类算法进行实验验证。实验结果表明:所提出的基于L1/2正则项稀疏约束和同质性约束的能源分解方法相比于传统判别式稀疏编码算法,能够有效提升能源分解的准确率。同时,基于能源分解的用户用电行为聚类分析效果也有明显提升。

     

  • 图 1  系统四元结构

    Figure 1.  System quaternion structure

    图 2  真实结果和分解结果对比

    Figure 2.  Comparison of real results and decomposition results

    图 3  不同参数对比

    Figure 3.  Contrast diagram of different parameters

    图 4  2周内和1天内真实电量和预测电量分布

    Figure 4.  Predicted distribution of real power consumption in two week and predicted distribution of real powerconsumption in one day

    图 5  传统的K-Means聚类算法有效性指标SSE评测结果

    Figure 5.  Traditional K-Means clustering algorithn evaluation results of effectiveness index of traditional clustering SSE

    图 6  传统的K-Means聚类算法有效性指标DBI评测结果

    Figure 6.  Traditional K-Means clustering alorithm evaluation results of effectiveness index of traditional clustering DBI

    图 7  改进的K-Means聚类算法有效性指标SSE评测结果

    Figure 7.  Improved K-Means clustering algorithm evaluation result of effectiveness index of improved clustering SSE

    图 8  改进的K-Means聚类算法有效性指标DBI评测结果

    Figure 8.  Improved K-Means clustering algorithm evaluation result of effectiveness index of improved clustering DBI

    图 9  总用电量用户聚类结果

    Figure 9.  Clustering results for users with total electricity consumption

    图 10  单类用电器用户聚类结果

    Figure 10.  Clustering result for users with single-type electrical appliances

    表  1  实验结果

    Table  1.   Experimental results

    方法 分解准确率/%
    训练集 测试集
    NMF 56.20 36.66
    NMF+ L1 85.60 66.95
    NMF+ L1/2 75.93 70.41
    本文方法 77.79 73.16
    下载: 导出CSV

    表  2  参数Ef对比结果

    Table  2.   Parameter Ef contrast results

    Ef 0.000 1 0.001 0.01 0.1 0.5 1
    Acc/% 69.42 69.72 66.74 59.22 58.74 58.77
    下载: 导出CSV
  • [1] DIECJMANN J, COOPERMAN A, BRODRICK J. Efficiency energy. Buildings energy data book[M]. Washington, D.C. : US Department of Energy, 2009.
    [2] 辛苗苗, 张延迟, 解大. 基于电力大数据的用户用电行为分析研究综述[J]. 电气自动化, 2019, 41(1): 1-4. doi: 10.3969/j.issn.1000-3886.2019.01.001

    XIN M M, ZHANG Y C, XIE D. Summary of researches on consumer behavior analysis based on big power data[J]. Electrical Automation, 2019, 41(1): 1-4(in Chinese). doi: 10.3969/j.issn.1000-3886.2019.01.001
    [3] HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12): 1870-1891. doi: 10.1109/5.192069
    [4] LAUGHMAN C, LEE K, COX R, et al. Power signature analysis[J]. IEEE Power and Energy Magazine, 2003, 1(2): 56-63. doi: 10.1109/MPAE.2003.1192027
    [5] SHAW S R, ABLER C B, LEPARD R F, et al. Instrumentation for high performance nonintrusive electrical load monitoring[J]. Journal of Solar Energy Engineering, 1998, 120(3): 224-229. doi: 10.1115/1.2888073
    [6] BERGES M, GOLDMAN E, MATTHEWS H S, et al. Learning systems for electric consumption of buildings[C]//International Workshop on Computing in Civil Engineering 2009. Reston: American Society of Civil Engineers, 2009: 1-10.
    [7] PATEL S N, ROBERTSON T, KIENTZ J A, et al. At the flick of a switch: Detecting and classifying unique electrical events on the residential power line (nominated for the best paper award)[C]//International Conference on Ubiquitous Computing. Berlin: Springer, 2007: 271-288.
    [8] ZEIFMAN M, ROTH K. Nonintrusive appliance load monitoring: Review and outlook[J]. IEEE Transactions on Consumer Electronics, 2011, 57(1): 76-84. doi: 10.1109/TCE.2011.5735484
    [9] KOLTER J, BATRA S, NG A. Energy disaggregation via discriminative sparse coding[J]. Advances in Neural Information Processing Systems, 2010, 23: 1153-1161.
    [10] KIM H, MARWAH M, ARLITT M, et al. Unsupervised disaggregation of low frequency power measurements[C]//Proceedings of the 2011 SIAM International Conference on Data Mining, 2011: 747-758.
    [11] PARSON O, GHOSH S, WEAL M, et al. An unsupervised training method for non-intrusive appliance load monitoring[J]. Artificial Intelligence, 2014, 217: 1-19. doi: 10.1016/j.artint.2014.07.010
    [12] KOLTER J Z, JAAKKOLA T. Approximate inference in additive factorial hmms with application to energy disaggregation[C]//Artificial Intelligence and Statistics, 2012: 1472-1482.
    [13] KELLY J, KNOTTENBELT W. Neural NILM: Deep neural networks applied to energy disaggregation[C]//Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. New York: ACM, 2015: 55-64.
    [14] SIROJAN T, PHUNG B T, AMBIKAIRAJAH E. Deep neural network based energy disaggregation[C]//2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE). Piscataway: IEEE Press, 2018: 73-77.
    [15] GAO Y, SCHAY A, HOU D Q, et al. Home appliance energy disaggregation using low frequency data and machine learning classifiers[C]//201716th IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway: IEEE Press, 2017: 76-83.
    [16] BATRA N, SINGH A, WHITEHOUSE K. Gemello: Creating a detailed energy breakdown from just the monthly electricity bill[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 431-440.
    [17] 李培强, 李欣然, 陈辉华, 等. 基于模糊聚类的电力负荷特性的分类与综合[J]. 中国电机工程学报, 2005, 25(24): 73-78. doi: 10.3321/j.issn:0258-8013.2005.24.013

    LI P Q, LI X R, CHEN H H, et al. The characteristics classification and synthesis of power load based on fuzzy clustering[J]. Proceedings of the CSEE, 2005, 25(24): 73-78(in Chinese). doi: 10.3321/j.issn:0258-8013.2005.24.013
    [18] 王璨, 冯勤超. 基于价值评价的电力用户分类研究[J]. 价值工程, 2009, 28(5): 64-67. doi: 10.3969/j.issn.1006-4311.2009.05.022

    WANG C, FENG Q C. The research of power customers classification based on value assessment[J]. Value Engineering, 2009, 28(5): 64-67(in Chinese). doi: 10.3969/j.issn.1006-4311.2009.05.022
    [19] 李欣然, 姜学皎, 钱军, 等. 基于用户日负荷曲线的用电行业分类与综合方法[J]. 电力系统自动化, 2010, 34(10): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201010012.htm

    LI X R, JIANG X J, QIAN J, et al. A classifying and synthesizing method of power consumer industry based on the daily load profile[J]. Automation of Electric Power Systems, 2010, 34(10): 56-61(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201010012.htm
    [20] ZHONG C L, SHAO J, ZHENG F, et al. Research on electricity consumption behavior of electric power users based on tag technology and clustering algorithm[C]//20185th International Conference on Information Science and Control Engineering (ICISCE). Piscataway: IEEE Press, 2018: 459-462.
    [21] NORDAHL C, BOEVA V, GRAHN H, et al. Profiling of household residents' electricity consumption behavior using clustering analysis[C]//International Conference on Computational Science. Berlin: Springer, 2019: 779-786.
    [22] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. doi: 10.1038/44565
    [23] OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381(6583): 607-609. doi: 10.1038/381607a0
    [24] RAHIMPOUR A, QI H R, FUGATE D, et al. Non-intrusive energy disaggregation using non-negative matrix factorization with sum-to-k constraint[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4430-4441. doi: 10.1109/TPWRS.2017.2660246
    [25] TANG J, GAO H, HU X, et al. Exploiting homophily effect for trust prediction[C]//Proceedings of the 6th ACM Interhational Conference on Web Search and Data Mining. New York: ACM, 2013: 53-62.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  133
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-27
  • 录用日期:  2020-11-06
  • 网络出版日期:  2022-02-20

目录

    /

    返回文章
    返回
    常见问答