留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含孔隙缺陷三维五向编织复合材料偏轴拉伸力学性能分析

杨志贤 张明 李昂 张超

杨志贤, 张明, 李昂, 等 . 含孔隙缺陷三维五向编织复合材料偏轴拉伸力学性能分析[J]. 北京航空航天大学学报, 2022, 48(4): 569-577. doi: 10.13700/j.bh.1001-5965.2020.0615
引用本文: 杨志贤, 张明, 李昂, 等 . 含孔隙缺陷三维五向编织复合材料偏轴拉伸力学性能分析[J]. 北京航空航天大学学报, 2022, 48(4): 569-577. doi: 10.13700/j.bh.1001-5965.2020.0615
YANG Zhixian, ZHANG Ming, LI Ang, et al. Off-axis tensile mechanical properties of 3D five-directional braided composites with void defects[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 569-577. doi: 10.13700/j.bh.1001-5965.2020.0615(in Chinese)
Citation: YANG Zhixian, ZHANG Ming, LI Ang, et al. Off-axis tensile mechanical properties of 3D five-directional braided composites with void defects[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 569-577. doi: 10.13700/j.bh.1001-5965.2020.0615(in Chinese)

含孔隙缺陷三维五向编织复合材料偏轴拉伸力学性能分析

doi: 10.13700/j.bh.1001-5965.2020.0615
基金项目: 

江苏省自然科学基金 BK20180855

机械结构力学及控制国家重点实验室开放课题 MCMS-E-0219Y01

详细信息
    通讯作者:

    张超, E-mail: zhangchao@ujs.edu.cn

  • 中图分类号: TB332

Off-axis tensile mechanical properties of 3D five-directional braided composites with void defects

Funds: 

Natural Science Foundation of Jiangsu Province BK20180855

Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures MCMS-E-0219Y01

More Information
  • 摘要:

    针对孔隙缺陷对材料力学性能的重要影响,在材料细观模型中引入随机分布的孔隙缺陷,研究了含孔隙缺陷三维五向编织复合材料的偏轴拉伸力学性能。基于2种典型编织角试件,讨论了孔隙率对材料正轴力学性能的影响,通过与实验数据对比,确定了材料的孔隙率。结合周期性边界条件施加偏轴拉伸载荷,获取了不同偏轴角度下材料的应力-应变曲线,并预测了材料的强度性能。模拟了典型偏轴角度下材料的细观损伤起始、演化过程,分析了材料的失效机理,为其他复合材料结构孔隙缺陷问题及偏轴载荷问题数值分析提供了一定的参考。

     

  • 图 1  三维五向编织复合材料单胞结构模型

    Figure 1.  Unit-cell structure model of 3D five-directional braided composites

    图 2  不同孔隙率试件的应力-应变曲线

    Figure 2.  Stress-strain curves of specimen with different void contents

    图 3  不同偏轴角度下试件的应力-应变曲线

    Figure 3.  Stress-strain curves of specimen with different off-axis angles

    图 4  0.5%孔隙率试件5DS1 45°偏轴拉伸损伤扩展过程

    Figure 4.  Tensile damage propagation process of specimen 5DS1 with 0.5% void content under 45° off-axial loading

    图 5  1.5%孔隙率试件5DS2 45°偏轴拉伸损伤扩展过程

    Figure 5.  Tensile damage propagation process of specimen 5DS2 with 1.5% void content under 45° off-axial loading

    表  1  试件工艺参数[18]及单胞模型结构参数

    Table  1.   Process parameters of specimen[18] and structure parameters of unit-cell model

    试件 纤维单丝数量 试件尺寸/(mm×mm×mm) 编织角α/(°) W/mm h/mm Vf
    编织纱 轴向纱
    5DS1 9 000 6 000 20×4×150 20 3.052 8.415 45
    5DS2 9 000 6 000 20×4×150 40 3.357 4.012 50
    下载: 导出CSV

    表  2  组分材料力学性能参数

    Table  2.   Mechanical properties of component materials

    组分材料 Ef1/GPa Ef2/GPa Gf12/GPa Gf23/GPa μf12 Em/GPa μm XT/MPa XC/MPa S/MPa
    T300 220 13.89 9 4.8 0.2 3 000 2 070
    酚醛 3.2 0.35 75 180 60
    下载: 导出CSV

    表  3  试件5DS1拉伸强度预测值与实验结果对比

    Table  3.   Comparison between predicted and experimental tensile strengths of specimen 5DS1

    试件 孔隙率/% 拉伸强度/MPa
    预测值 实验结果
    5DS1 0 681 632
    0.1 647
    0.5 618
    1 598
    1.5 576
    2 549
    下载: 导出CSV

    表  4  试件5DS2拉伸强度预测值与实验结果对比

    Table  4.   Comparison between predicted and experimental tensile strengths of specimen 5DS2

    试件 孔隙率/% 拉伸强度/MPa
    预测值 实验结果
    5DS1 0 346 259
    0.1 280
    0.5 280
    1 266
    1.5 271
    2 267
    下载: 导出CSV

    表  5  试件5DS1偏轴拉伸力学性能

    Table  5.   Mechanical properties of specimen 5DS1 under off-axial tension

    试件 偏轴角度/(°) 拉伸强度/MPa 断裂应变/%
    5DS1 0 618.9 0.847
    30 423.1 0.842
    45 297.3 0.998
    60 177.1 1.313
    下载: 导出CSV

    表  6  试件5DS2偏轴拉伸力学性能

    Table  6.   Mechanical properties of specimen 5DS2 under off-axial tension

    试件 偏轴角度/(°) 拉伸强度/MPa 断裂应变/%
    5DS2 0 271.5 0.673
    30 267.8 0.787
    45 251.9 1.021
    60 175.6 1.157
    下载: 导出CSV
  • [1] 张超. 三维多向编织复合材料宏细观力学性能及高速冲击损伤研究[D]. 南京: 南京航空航天大学, 2013.

    ZHANG C. Research on macro-meso-mechanical properties and high velocity impact damage of 3D multi-directional braided composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
    [2] XU K, XU X W. Finite element analysis of mechanical properties of 3D five-directional braided composites[J]. Materials Science and Engineering: A, 2008, 487(1-2): 499-509. doi: 10.1016/j.msea.2007.10.030
    [3] LI D S, LU Z X, CHEN L, et al. Microstructure and mechanical properties of three-dimensional five-directional braided composites[J]. International Journal of Solids and Structures, 2009, 46(18-19): 3422-3432. doi: 10.1016/j.ijsolstr.2009.05.013
    [4] 韩小进, 孙慧玉, 闫光, 等. 三维五向编织复合材料渐进损伤分析的数值方法[J]. 复合材料学报, 2012, 29(6): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201206034.htm

    HAN X J, SUN H Y, YAN G, et al. Numerical method for progressive damage analysis of 3D five-directional braided composites[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 219-224(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201206034.htm
    [5] ZHANG D T, SUN Y, WANG X M, et al. Meso-scale finite element analyses of three-dimensional five-directional braided composites subjected to uniaxial and biaxial loading[J]. Journal of Reinforced Plastics and Composites, 2015, 34(24): 1989-2005. doi: 10.1177/0731684415596629
    [6] HUANG T, GONG Y H. A multiscale analysis for predicting the elastic properties of 3D woven composites containing void defects[J]. Composite Structures, 2018, 185: 401-410. doi: 10.1016/j.compstruct.2017.11.046
    [7] MEHDIKHANI M, PETROV N A, STRAUMIT I, et al. The effect of voids on matrix cracking in composite laminates as revealed by combined computations at the micro- and meso-scales[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 180-192. doi: 10.1016/j.compositesa.2018.11.009
    [8] LIU T, FAN W, WU X Y. Comparisons of influence of random defects on the impact compressive behavior of three different textile structural composites[J]. Materials & Design, 2019, 181: 108073.
    [9] XU K, QIAN X M. An FEM analysis with consideration of random void defects for predicting the mechanical properties of 3D braided composites[J]. Advances in Materials Science and Engineering, 2014, 2014: 1-12.
    [10] DONG J W, HUO N F. A two-scale method for predicting the mechanical properties of 3D braided composites with internal defects[J]. Composite Structures, 2016, 152: 1-10. doi: 10.1016/j.compstruct.2016.05.025
    [11] GAO X H, YUAN L, FU Y T, et al. Prediction of mechanical properties on 3D braided composites with void defects[J]. Composites Part B: Engineering, 2020, 197: 108164. doi: 10.1016/j.compositesb.2020.108164
    [12] GE L, LI H M, LIU B S, et al. Multi-scale elastic property prediction of 3D five-directional braided composites considering pore defects[J]. Composite Structures, 2020, 244: 112287. doi: 10.1016/j.compstruct.2020.112287
    [13] 牛序铭. 偏轴载荷下单向陶瓷基复合材料拉伸行为数值模拟及应用[D]. 南京: 南京航空航天大学, 2018: 83-98.

    NIU X M. Numerical simulation of tensile behavior of unidirectional ceramic matrix composite under off-axial loading and its application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 83-98(in Chinese).
    [14] 杨昌. 复合材料单向板偏轴疲劳寿命预测研究[D]. 南京: 南京航空航天大学, 2014: 36-41.

    YANG C. Research on fatigue life prediction of unidirectional composite[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 36-41(in Chinese).
    [15] LU Z X, ZHOU Y, YANG Z Y, et al. Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension[J]. Computational Materials Science, 2013, 79: 485-494. doi: 10.1016/j.commatsci.2013.07.003
    [16] WANG L, ZHAO B, WU J Y, et al. Experimental and numerical investigation on mechanical behaviors of woven fabric composites under off-axial loading[J]. International Journal of Mechanical Sciences, 2018, 141: 157-167. doi: 10.1016/j.ijmecsci.2018.03.030
    [17] XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8): 1907-1921. doi: 10.1016/S0020-7683(03)00024-6
    [18] 李仲平, 卢子兴, 冯志海, 等. 三维五向碳/酚醛编织复合材料的拉伸性能及破坏机理[J]. 航空学报, 2007, 28(4): 869-873. doi: 10.3321/j.issn:1000-6893.2007.04.017

    LI Z P, LU Z X, FENG Z H, et al. Investigation of the tensile properties and failure mechanism of integrally-braided 5D carbon/phenolic composites[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 869-873(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.04.017
    [19] CHAMIS C C. Mechanics of composites materials: Past, present and future[J]. Journal of Composites Technology and Research, 1989, 11(1): 3-14. doi: 10.1520/CTR10143J
    [20] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [21] MURAKAMI S. Mechanical modeling of material damage[J]. Journal of Applied Mechanics, 1988, 55(2): 280-286. doi: 10.1115/1.3173673
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  69
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 录用日期:  2021-04-02
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回
    常见问答